• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Application of Neutrosophic Logic in Classifiers Evaluated under Region-Based Image Categorization System

Ju, Wen 01 May 2011 (has links)
Neutrosophic logic is a relatively new logic that is a generalization of fuzzy logic. In this dissertation, for the first time, neutrosophic logic is applied to the field of classifiers where a support vector machine (SVM) is adopted as the example to validate the feasibility and effectiveness of neutrosophic logic. The proposed neutrosophic set is integrated into a reformulated SVM, and the performance of the achieved classifier N-SVM is evaluated under an image categorization system. Image categorization is an important yet challenging research topic in computer vision. In this dissertation, images are first segmented by a hierarchical two-stage self organizing map (HSOM), using color and texture features. A novel approach is proposed to select the training samples of HSOM based on homogeneity properties. A diverse density support vector machine (DD-SVM) framework that extends the multiple-instance learning (MIL) technique is then applied to the image categorization problem by viewing an image as a bag of instances corresponding to the regions obtained from the image segmentation. Using the instance prototype, every bag is mapped to a point in the new bag space, and the categorization is transformed to a classification problem. Then, the proposed N-SVM based on the neutrosophic set is used as the classifier in the new bag space. N-SVM treats samples differently according to the weighting function, and it helps reduce the effects of outliers. Experimental results on a COREL dataset of 1000 general purpose images and a Caltech 101 dataset of 9000 images demonstrate the validity and effectiveness of the proposed method.
2

Um estudo sobre categorização de mídias através do método de Latent Dirichlet Allocatio / A study on media categorization using the latent Dirichlet allocation method

Costa, Glauber de Oliveira 07 December 2010 (has links)
Orientador: Siome Klein Goldenstein / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-17T03:15:16Z (GMT). No. of bitstreams: 1 Costa_GlauberdeOliveira_M.pdf: 17659239 bytes, checksum: 5e50f48bdc78f7e7a59d4904e9e05b76 (MD5) Previous issue date: 2010 / Resumo: Com o crescimento das bases de imagem digitais, motivado principalmente pela popularização da World Wide Web, bem como a massificação de dispositivos de captura digital de imagens, o processamento e extração de informações semânticas destas imagens cresce em importância. A informação encerrada nestas imagens não tem significado semântico imediato, sendo necessário o uso de técnicas para capturá-la. A abordagem trivial, que envolve a anotação das imagens por humanos se torna falha à medida que o tamanho das bases cresce, sendo necessário voltar-se para métodos mais sofisticados. Esta dissertação estudou a aplicação do método Latent Dirichlet Allocation em bases de imagens digitais, verificando a performance do algoritmo utilizando quatro métodos distintos de criação de dicionários visuais. Este trabalho mostrou que a combinação de diferentes descritores capturando aspectos distintos das imagens, para a construção de classificadores pelo método Latent Dirichlet Allocation é capaz de obter taxas de acerto médias na faixa de 90%, ainda que cada classificador individualmente não tenha desempenho muito superior à chance. Ainda, os experimentos realizados demonstraram que a influência do tamanho do dicionário e número de tópicos não é significativa, sendo possível construir classificadores com poucos tópicos latentes a partir de poucas palavras visuais, e portanto, eficientes. / Abstract: With the growth of digital image databases, mainly motivated by the spread of the World Wide Web and digital capture devices, processing and extraction of semantic information from these images gain importance. The information contained within these images have no immediate semantic meaning and techniques must be used in order to acquire it. The trivial approach, which involves the manual annotation of the images by humans, becomes flawed as the size of the database grows. Using a more sophisticated method is needed. This work studied applications of the Latent Dirichlet Allocation method for digital image databases, verifying the algorithm's performance using four different methods of codewords dictionary generation. It shows that a combination of different descriptors capturing different aspects of the images, aiming at the construction of Latent Dirichlet Allocation -based classifiers, is capable of achieving hit ratios around 90%, even if each of the individual classifiers isn't largely superior to chance. Yet, experiments performed during this work demonstrated that the influence of the codewords dictionary size and the number of topics in the model are not significant, making the construction of small-sized, and thus, efficient classifiers possible. / Mestrado / Visão Computacional / Mestre em Ciência da Computação
3

A framework for pattern classifier selection and fusion = Um arcabouço para seleção e fusão de classificadores de padrão / Um arcabouço para seleção e fusão de classificadores de padrão

Faria, Fabio Augusto, 1983- 03 July 2014 (has links)
Orientadores: Ricardo da Silva Torres, Anderson Rocha / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T22:15:52Z (GMT). No. of bitstreams: 1 Faria_FabioAugusto_D.pdf: 5657546 bytes, checksum: 5b95fa0f8a5653e7b13d8895cde208f1 (MD5) Previous issue date: 2014 / Resumo: O crescente aumento de dados visuais, seja pelo uso de inúmeras câmeras de vídeo monitoramento disponíveis ou pela popularização de dispositivos móveis que permitem pessoas criar, editar e compartilhar suas próprias imagens/vídeos, tem contribuído enormemente para a chamada ''big data revolution". Esta grande quantidade de dados visuais dá origem a uma caixa de Pandora de novos problemas de classificação visuais nunca antes imaginados. Tarefas de classificação de imagens e vídeos foram inseridos em diferentes e complexas aplicações e o uso de soluções baseadas em aprendizagem de máquina tornou-se mais popular para diversas aplicações. Entretanto, por outro lado, não existe uma ''bala de prata" que resolva todos os problemas, ou seja, não é possível caracterizar todas as imagens de diferentes domínios com o mesmo método de descrição e nem utilizar o mesmo método de aprendizagem para alcançar bons resultados em qualquer tipo de aplicação. Nesta tese, propomos um arcabouço para seleção e fusão de classificadores. Nosso método busca combinar métodos de caracterização de imagem e aprendizagem por meio de uma abordagem meta-aprendizagem que avalia quais métodos contribuem melhor para solução de um determinado problema. O arcabouço utiliza três diferentes estratégias de seleção de classificadores para apontar o menos correlacionados e eficazes, por meio de análises de medidas de diversidade. Os experimentos mostram que as abordagens propostas produzem resultados comparáveis aos famosos métodos da literatura para diferentes aplicações, utilizando menos classificadores e não sofrendo com problemas que afetam outras técnicas como a maldição da dimensionalidade e normalização. Além disso, a nossa abordagem é capaz de alcançar resultados eficazes de classificação usando conjuntos de treinamento muito reduzidos / Abstract: The frequent growth of visual data, either by countless available monitoring video cameras or the popularization of mobile devices that allow each person to create, edit, and share their own images and videos have contributed enormously to the so called ''big-data revolution''. This shear amount of visual data gives rise to a Pandora box of new visual classification problems never imagined before. Image and video classification tasks have been inserted in different and complex applications and the use of machine learning-based solutions has become the most popular approach to several applications. Notwithstanding, there is no silver bullet that solves all the problems, i.e., it is not possible to characterize all images of different domains with the same description method nor is it possible to use the same learning method to achieve good results in any kind of application. In this thesis, we aim at proposing a framework for classifier selection and fusion. Our method seeks to combine image characterization and learning methods by means of a meta-learning approach responsible for assessing which methods contribute more towards the solution of a given problem. The framework uses three different strategies of classifier selection which pinpoints the less correlated, yet effective, classifiers through a series of diversity measure analysis. The experiments show that the proposed approaches yield comparable results to well-known algorithms from the literature on many different applications but using less learning and description methods as well as not incurring in the curse of dimensionality and normalization problems common to some fusion techniques. Furthermore, our approach is able to achieve effective classification results using very reduced training sets / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
4

Classificadores e aprendizado em processamento de imagens e visão computacional / Classifiers and machine learning techniques for image processing and computer vision

Rocha, Anderson de Rezende, 1980- 03 March 2009 (has links)
Orientador: Siome Klein Goldenstein / Tese (doutorado) - Universidade Estadual de Campinas, Instituto da Computação / Made available in DSpace on 2018-08-12T17:37:15Z (GMT). No. of bitstreams: 1 Rocha_AndersondeRezende_D.pdf: 10303487 bytes, checksum: 243dccfe5255c828ce7ead27c27eb1cd (MD5) Previous issue date: 2009 / Resumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação. / Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques. / Doutorado / Engenharia de Computação / Doutor em Ciência da Computação

Page generated in 0.1259 seconds