• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow Imaging Using MRI: Quantification and Analysis

Jiraraksopakun, Yuttapong 2009 May 1900 (has links)
A complex and challenging problem in flow study is to obtain quantitative flow information in opaque systems, for example, blood flow in biological systems and flow channels in chemical reactors. In this regard, MRI is superior to the conventional optical flow imaging or ultrasonic Doppler imaging. However, for high speed flows, complex flow behaviors and turbulences make it difficult to image and analyze the flows. In MR flow imaging, MR tagging technique has demonstrated its ability to simultaneously visualize motion in a sequence of images. Moreover, a quantification method, namely HARmonic Phase (HARP) analysis, can extract a dense velocity field from tagged MR image sequence with minimal manual intervention. In this work, we developed and validated two new MRI methods for quantification of very rapid flows. First, HARP was integrated with a fast MRI imaging method called SEA (Single Echo Acquisition) to image and analyze high velocity flows. Second, an improved HARP method was developed to deal with tag fading and data noise in the raw MRI data. Specifically, a regularization method that incorporates the law of flow dynamics in the HARP analysis was developed. Finally, the methods were validated using results from the computational fluid dynamics (CFD) and the conventional optimal flow imaging based on particle image velocimetry (PIV). The results demonstrated the improvement from the quantification using solely the conventional HARP method.
2

Estimation of translational motion by simplified planar compound-like eye schemes

Lin, Gwo-Long 14 December 2007 (has links)
This dissertation presents a technique for recovering translational motion parameters using two simplified planar compound-like eye schemes, namely a parallel trinocular system and a single-row Superposition-type Planar Compound-like Eye (SPCE). In the parallel trinocular scheme, a least squares estimation algorithm is developed for recovering the translational motion parameters. The proposed approach resolves the matrix singularity problem encountered when attempting to recover motion parameters using a conventional binocular scheme. To further reduce the computational complexity of the motion estimation process, a compact closed-form scheme is also proposed to estimate the translational motion parameters. The closed-form algorithm not only resolves the matrix singularity problem, but also avoids the requirement for matrix manipulation. As a result, it has a low computational complexity and is therefore an ideal solution for performing motion estimation in complex, real-world visual imaging applications following an initial image filtering process. The performance of the closed-form algorithm is evaluated by performing a series of numerical simulations in which translational displacements of various magnitudes in three-dimensional space are recovered in both noise-free and perturbed environments. In general, the results demonstrate that the translational motion parameters can be reconstructed with a high degree of accuracy provided that the motion in the depth direction is limited to small displacements only. Having developed a motion estimation scheme for a parallel trinocular system, additional charge coupled device (CCD) cameras are added in the horizontal direction to create a single-row SPCE. Translational motion models for the SPCE are then constructed by stacking the optical flow equations in the horizontal direction. The ego-translational parameters are then extracted using a simple least squares estimation algorithm. The simulation results reveal that the introduction of additional cameras to the machine vision system ensures an excellent motion estimation performance without the need for filters of any kind even when the viewing field is characterized by significant noise or the CCD deployment within the SPCE configuration has a non-uniform distribution. Overall, the parallel binocular scheme and single-row SPCE configuration presented in this dissertation demonstrate a high degree of robustness toward noise and enable the motion estimation process to be performed in a rapid and computationally efficient manner using a simple least squares approximation approach. Whilst science can not realistically hope to improve upon the visioning capabilities found in the insect world, the techniques presented in this dissertation nonetheless provide a sound foundation for the development of artificial planar-array compound-like eyes which mimic the mechanisms at work in biological compound eyes and attain an enhanced visioning performance as a result.
3

The effect of saccades on visual sensitivity and time perception

Diamond, Mark R. January 2003 (has links)
Considerable evidence indicates that visual sensitivity is reduced during saccadic eye movement. A central question has been whether saccadic suppression results from a non-visual central signal, or whether the obligate image motion that accompanies saccades is itself sufficient to mask vision. In the first of a series of experiments described here, the visual and non-visual effects of saccades were distinguished by measuring contrast sensitivity to luminance modulated low spatial frequency gratings, at 17 cd·m¯² and 0.17 cd·m¯², in saccade conditions and in conditions in which saccade-like image motion was produced by the rotation of a mirror but when observers’ eyes were kept still. The time course of suppression was examined by making measurements from well before image motion began until well after it had ended. A tenfold decrease in contrast sensitivity was found for luminance-modulated gratings with saccades, but little suppression was found with simulated saccades. Adding high contrast noise to the visual display increased the magnitude and the duration of the suppression during simulated saccades but had little effect on suppression produced by real saccades. At lower luminance, suppression was found to be reduced, and its course shallower than at higher luminance. Simulated saccades produced shallower suppression over a longer time course at both higher and lower luminance. In a second experiment the time course of contrast sensitivity to chromatically modulated gratings, at 17 cd·m¯², was examined. No suppression was found; rather there was some evidence of an enhancement of sensitivity, both before and after saccades, relative to fixation conditions. Differences in the effects of real and simulated saccades in the magnitude and time course of sensitivity loss with luminance modulated gratings suggest that saccadic suppression has an extraretinal component that acts on the magnocellular system; the pattern of enhancement found in the later experiment suggests a selective favouring of the parvocellular system both immediately prior to and immediately after saccades. The possibility that the degree of enhancement in sensitivity varies across the visual field was examined using spatially localized stimuli (either high spatial frequency chromatically modulated gratings or letter combinations). Sensitivity was found to decrease at the initial fixation point during the 75 ms prior to saccadic onset and simultaneously to improve at the saccadic target. In the immediate post-saccadic period, sensitivity at the saccadic target was found to exceed that which had been manifest at the initial fixation point prior to saccades, suggesting that post-saccadic enhancement may improve the temporal contrast between one fixation and the next. The final experiments investigated the possibility that our sense of continuity across saccades (as opposed to stability) is influenced by saccade-induced errors in locating events in time. The results of these experiments suggest that saccades can result in errors in judging (a) the time at which external events occur relative to saccadic onset, (b) the temporal order of visual events, and (c) the magnitude of temporal intervals. It is concluded that apparent time is generally foreshortened prior to saccades. This might be due to selective suppression of magnocellular activity and might function to hide saccades and their effects from our awareness. A speculative synthesis is presented based on the idea that recurrent feedback between the neocortical and cortical structures on the one hand, and the thalamic nuclei on the other, has special importance for perception around the time of saccades
4

Marches des corps, [dé]marches des images. Image et mouvement a l'aune du regard contemplatif et du corps en acte / Walking bodies and the [un]thinking of images. An Essay on Visual Mobility from the Double Perspective of the Ocular and the Corporeal

Giannouri, Evgenia 13 December 2010 (has links)
Cette étude a des assises autant dans l’histoire de l’art que dans l’esthétique du cinéma. Son point de départ est une aporie : « Qu’est-ce que le mouvement en image dès lors il s’agit de le chercher en dehors des représentations et de leurs techniques ? ». La substance mobile des images dont nous souhaitons faire ici le cas se situe à l’intérieur même du point de vue et non pas à l’enchaînement entre points de vue. Il s’agit de penser sa construction en termes d’un clivage interne, d’une bifurcation. Il s’agit surtout de placer la construction du point de vue au croisement de deux apprentissages [mathésis] : d’un côté celle de la contemplation du monde à partir d’un point fixe, unique ou changeant, de l’autre celle de la mobilité inhérente qui régit tout aspect de la vie. Dans ce contexte, le mouvement des images ne serait pas seulement le résultat d’une révolution du regard ou l’aboutissement d’une aventure technique, mais également et au même titre qu’eux, le résultat d’un événement conflictuel entre deux configurations du [sa]voir différentes bien que totalement pondérées. « Qu’est-ce qui ne marche pas ? » est la question qui nous guide à travers l’écriture. Les images témoignent d’une forme de [dé]marche transversale, d’un accident de la « marche » tant au niveau structurel du film qu’au niveau diégétique. Elles renvoient à quelque chose comme un trouble, un dissentiment. Chaque partie de ce travail constitue, enfin, une étude de cas. Chaque cas dénonce une aporie de point de vue : pittoresque, elliptique, théorique. Les films analysés, très différents les uns des autres, proviennent du cinéma et de ses pratiques élargies. Mais chacune des trois parties est également conçue autour d’un « metteur-en-scène » au sens large : Robert Smithson, Gus van Sant, Victor Burgin. Issus de la grande famille des artistes et non seulement de celle des cinéastes confirmés, ils nous guident à travers la construction de récits ancrés autant dans l’histoire des arts [peinture, sculpture, architecture] que dans les péripéties du cinéma contemporain. / Both art history and cinema aesthetics lie at the foundations of this study. Our starting point is a perplexing difficulty [an aporia]: “What is an image motion when we think about movement beyond its representations and the techniques that accompany them?”. In this dissertation, we examine the mobile substance of images from within the standpoint itself and what resembles to an internal cleavage. We argue that a particular kind of viewpoint can emerge at the crossroads of two different understandings [mathesis]: on the one hand, the contemplation of the world from a single or interchangeable fixed point; on the other hand, the corporeal mobility inherent to every aspect of life. Within this context, image motion is more than just the consequence of a major change in our “ways of looking”, or the outcome of a technical adventure. We argue that image motion is equally the result of a conflict between two different configurations of knowledge - seeing. The images attest to a way of thinking and unthinking motion, illustrated by a disruption in “the walk of the images” which takes place both in the film’s narrative and in the film’s structure revealing something like a trouble, or a dissent. Each section in this work constitutes an autonomous case study. Each case relates to a particular bifurcation of the standpoint: picturesque; elliptical; theoretical. The films in question, very different from one another, stem from cinema and its expanded practices. These three sections are also articulated around three “metteurs-en-scène”: Robert Smithson, Gus Van Sant, Victor Burgin. Belonging to the larger family of artists [and not only to that of confirmed filmmakers], they guide us through the unfolding of a narrative, whose roots are to be found as much in the history of the arts [painting, sculpture, architecture], as in the vicissitudes of contemporary cinema.
5

On the Design of Ultra-fast Electro-Mechanical Actuators

Bissal, Ara January 2013 (has links)
The continuously increasing demand for connecting electric grids with remote renewable energy sources such as wind power and photovoltaic cells has rekindled interest in high voltage direct current (HVDC) multi-terminal networks. Although HVDC networks have numerous benefits, their adoption relies entirely on the availability of HVDC circuit breakers which, compared to traditional alternating current circuit breakers, have to operate in a time frame of milliseconds. This thesis deals with the design of ultra-fast electro-mechanical actuators based on the so-called Thomson coil (TC) actuator. The simulation of a (TC) actuator constitutes a multi-physical problem where electromagnetic, thermal, and mechanical aspects must be considered. Moreover, it is complex since all those variables are co-dependent and have to be solved for simultaneously. As a result, a multi-physics simulation model that can predict the behavior and performance of such actuators with a high degree of accuracy was developed. Furthermore, other actuator concepts were also investigated and modeled in light of searching for a drive with a superior efficiency. The theory behind the force generation principles of two different types of ultra-fast electromechanical actuators, the TC and the double sided coil (DSC), were compared by the use of static, frequency, and comprehensive transient multi-physics finite element simulation models. Although, simulation models serve as a powerful tool for modeling and designing such state of the art actuators, without validation, they are weak and prone to errors since they rely on approximations and simplifications that might not always hold. Therefore, a prototype was built in the laboratory and the model was validated experimentally. Finally, it is important to note that the drives in this thesis are intended to actuate metallic contacts. As such, their behavior and performance upon mechanical loading was studied. Furthermore, some scaling techniques were applied to boost their performance and efficiency. / <p>QC 20130422</p>
6

Modeling and Verification of Ultra-Fast Electro-Mechanical Actuators for HVDC Breakers

Bissal, Ara January 2015 (has links)
The continuously increasing demand for clean renewable energy has rekindled interest in multi-terminal high voltage direct current (HVDC) grids. Although such grids have several advantages and a great potential, their materialization has been thwarted due to the absence of HVDC breakers. In comparison with traditional alternating current (AC) breakers, they should operate and interrupt fault currents in a time frame of a few milliseconds. The aim of this thesis is focused on the design of ultra-fast electro-mechanical actuator systems suitable for such HVDC breakers.Initially, holistic multi-physics and hybrid models with different levels of complexity and computation time were developed to simulate the entire switch. These models were validated by laboratory experiments. Following a generalized analysis, in depth investigations involving simulations complemented with experiments were carried out on two of the sub-components of the switch: the ultra-fast actuator and the damper. The actuator efficiency, final speed, peak current, and maximum force were explored for different design data.The results show that models with different levels of complexity should be used to model the entire switch based on the magnitude of the impulsive forces. Deformations in the form of bending or elongation may deteriorate the efficiency of the actuator losing as much as 35%. If that cannot be avoided, then the developed first order hybrid model should be used since it can simulate the behavior of the mechanical switch with a very good accuracy. Otherwise, a model comprising of an electric circuit coupled to an electromagnetic FEM model with a simple mechanics model, is sufficient.It has been shown that using a housing made of magnetic material such as Permedyn, can boost the efficiency of an actuator by as much as 80%. In light of further optimizing the ultra-fast actuator, a robust optimization algorithm was developed and parallelized. In total, 20520 FEM models were computed successfully for a total simulation time of 7 weeks. One output from this optimization was that a capacitance of 2 mF, a charging voltage of 1100 V and 40 turns yields the highest efficiency (15%) if the desired velocity is between 10 m/s and 12 m/s.The performed studies on the passive magnetic damper showed that the Halbach arrangement gives a damping force that is two and a half times larger than oppositely oriented axially magnetized magnets. Furthermore, the 2D optimization model showed that a copper thickness of 1.5 mm and an iron tube that is 2 mm thick is the optimum damper configuration. / <p>QC 20150422</p>

Page generated in 0.0709 seconds