Spelling suggestions: "subject:"fumagem carpal"" "subject:"aimagem carpal""
1 |
Metodologia de estimação de idade óssea baseada em características métricas utilizando mineradores de dados e classificador neural / Methodology for bone age estimation based on metric characteristics using data mining and neural classifierRaymundo, Evandra Maria 29 September 2009 (has links)
Este trabalho apresenta uma proposta de metodologia de estimação de idade óssea baseada em características métricas, utilizando o banco de imagens carpais da Escola de Engenharia de São Carlos (EESC). As imagens foram devidamente segmentadas para obtenção da área, perímetro e comprimento de cada osso, gerando, assim, um banco de dados métricos o CarpEven. As informações da base métrica CarpEven foram submetidas a dois mineradores de dados: ao StARMiner, (Statistical Association Rules) uma metodologia de mineração de dados criada por um grupo de pesquisadores do ICMC-USP, e ao Weka (Waikato Environment for Knowledge Analysis), desenvolvido pela Universidade Waikato da Nova Zelândia. As informações foram submetidas a classificadores neurais, contribuindo, assim, para a criação de uma nova metodologia de estimação de idade óssea. Finalmente, é feita uma comparação entre os resultados obtidos e os resultados já alcançados por outras pesquisas. / This work presents a methodology for bone age estimation based on metric characteristics using the carpal images database from Engineering School of São Carlos (EESC-USP). The images were properly segmented to obtain the area, perimeter and length of each bone, thus generating a metric database named CarpEven. The database information were submitted to two data miners: the StarMiner (Statistical Association Rules Miner) a methodology for data mining created by a group of researchers from ICMC-USP, and the Weka (Waikato Environment for Knowledge Analysis), developed by the University of Waikato in New Zealand. The information was submitted to the neural classifiers contributing to the creation of a new methodology for bone age estimation. The results are compared with those obtained by others research.
|
2 |
Metodologia de estimação de idade óssea baseada em características métricas utilizando mineradores de dados e classificador neural / Methodology for bone age estimation based on metric characteristics using data mining and neural classifierEvandra Maria Raymundo 29 September 2009 (has links)
Este trabalho apresenta uma proposta de metodologia de estimação de idade óssea baseada em características métricas, utilizando o banco de imagens carpais da Escola de Engenharia de São Carlos (EESC). As imagens foram devidamente segmentadas para obtenção da área, perímetro e comprimento de cada osso, gerando, assim, um banco de dados métricos o CarpEven. As informações da base métrica CarpEven foram submetidas a dois mineradores de dados: ao StARMiner, (Statistical Association Rules) uma metodologia de mineração de dados criada por um grupo de pesquisadores do ICMC-USP, e ao Weka (Waikato Environment for Knowledge Analysis), desenvolvido pela Universidade Waikato da Nova Zelândia. As informações foram submetidas a classificadores neurais, contribuindo, assim, para a criação de uma nova metodologia de estimação de idade óssea. Finalmente, é feita uma comparação entre os resultados obtidos e os resultados já alcançados por outras pesquisas. / This work presents a methodology for bone age estimation based on metric characteristics using the carpal images database from Engineering School of São Carlos (EESC-USP). The images were properly segmented to obtain the area, perimeter and length of each bone, thus generating a metric database named CarpEven. The database information were submitted to two data miners: the StarMiner (Statistical Association Rules Miner) a methodology for data mining created by a group of researchers from ICMC-USP, and the Weka (Waikato Environment for Knowledge Analysis), developed by the University of Waikato in New Zealand. The information was submitted to the neural classifiers contributing to the creation of a new methodology for bone age estimation. The results are compared with those obtained by others research.
|
Page generated in 0.0485 seconds