Spelling suggestions: "subject:"imagens coloridas"" "subject:"magens coloridas""
11 |
Mistura de cores: uma nova abordagem para processamento de cores e sua aplicação na segmentação de imagens / Colors mixture: a new approach for color processing and its application in image segmentationSeverino Junior, Osvaldo 28 May 2009 (has links)
Inspirado nas técnicas utilizadas por pintores que sobrepõem camadas de tintas de diversos matizes na geração de uma tela artística e também observando-se a distribuição da quantidade dos cones na retina do olho humano na interpretação destas cores, este trabalho propõe uma técnica de processamento de imagens baseada na mistura de cores. Trata-se de um método de quantização de cores estático que expressa a proporção das cores preto, azul, verde, ciano, vermelho, magenta, amarelo e branco obtida pela representação binária da cor que compõe os pixels de uma imagem RGB com 8 bits por canal. O histograma da mistura é denominado de misturograma e gera planos que interceptam o espaço RGB, definindo o espaço de cor HSM (Hue, Saturation and Mixture). A posição destes planos dentro do cubo RGB é modelada por meio da distribuição dos cones sensíveis aos comprimentos de onda curta (Short), média (Middle) e longa (Long) consideradas para a retina humana. Para demonstrar a aplicabilidade do espaço de cor HSM, é proposta, neste trabalho, a segmentação dos pixels de uma imagem digital em pele humana ou não pele com o uso dessa nova abordagem. Para análise de desempenho da mistura de cores foi implementado um método tradicional no espaço de cor RGB e também usando uma distribuição Gaussiana nos espaços de cores HSV e HSM. Os resultados obtidos demonstram o potencial da técnica que emprega a mistura de cores para a segmentação de imagens digitais coloridas. Verificou-se também que, baseando-se apenas na camada mais significativa da mistura de cores, gera-se a imagem esboço de uma imagem facial denominada esboço da face. Os resultados obtidos comprovam o bom desempenho do esboço da face em aplicações CBIR. / Inspired on the techniques used by painters to overlap layers of various hues of paint to create oil paintings, and also on observations of the distribution of cones in human retina for the interpretation of these colors, this thesis proposes an image processing technique based on color mixing. This is a static color quantization method that expresses the mixture of black, blue, green, cyan, red, magenta, yellow and white colors quantified by the binary weight of the color that makes up the pixels of an RGB image with 8 bits per channel. The mixture histogram, called a mixturegram, generates planes that intersect the RGB color space, defining the HSM (Hue, Saturation and Mixture) color space. The position of these planes inside the RGB cube is modeled by the distribution of cones sensitive to the short (S), middle (M) and long (L) wave lengths of the human retina. To demonstrate the applicability of the HSM color space, this thesis proposes the segmentation of the pixels of a digital image of human skin or non-skin using this new approach. The performance of the color mixture is analyzed by implementing a traditional method in the RGB color space and by a Gaussian distribution in the HSV and HSM color spaces. The results demonstrate the potential of the proposed technique for color image segmentation. It was also noted that, based only on the most significant layer of the colors mixture, it is possible generates the face sketch image. The results show the performance of the face sketch image in CBIR applications.
|
12 |
Compress?o auto-adaptativa de imagens coloridasSouza, Gustavo Fontoura de 21 January 2005 (has links)
Made available in DSpace on 2014-12-17T14:56:05Z (GMT). No. of bitstreams: 1
GustavoFS.pdf: 1361196 bytes, checksum: fe1a67dcdb84a334e6c49247c8c68a06 (MD5)
Previous issue date: 2005-01-21 / Image compress consists in represent by small amount of data, without loss a visual quality. Data compression is important when large images are used, for example satellite image. Full color digital images typically use 24 bits to specify the color of each pixel of the Images with 8 bits for each of the primary components, red, green and blue (RGB). Compress an image with three or more bands (multispectral) is fundamental to reduce the transmission time, process time and record time. Because many applications need images, that compression image data is important: medical image, satellite image, sensor etc. In this work a new compression color images method is proposed. This method is based in measure of information of each band. This technique is called by Self-Adaptive Compression (S.A.C.) and each band of image is compressed with a different threshold, for preserve information with better result. SAC do a large compression in large redundancy bands, that is, lower information and soft compression to bands with bigger amount of information. Two image transforms are used in this technique: Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). Primary step is convert data to new bands without relationship, with PCA. Later Apply DCT in each band. Data Loss is doing when a threshold discarding any coefficients. This threshold is calculated with two elements: PCA result and a parameter user. Parameters user define a compression tax. The system produce three different thresholds, one to each band of image, that is proportional of amount information. For image reconstruction is realized DCT and PCA inverse. SAC was compared with JPEG (Joint Photographic Experts Group) standard and YIQ compression and better results are obtain, in MSE (Mean Square Root). Tests shown that SAC has better quality in hard compressions. With two advantages: (a) like is adaptive is sensible to image type, that is, presents good results to divers images kinds (synthetic, landscapes, people etc., and, (b) it need only one parameters user, that is, just letter human intervention is required / Comprimir uma imagem consiste, basicamente, em represent?-la atrav?s de uma menor quantidade de dados, sem para tanto comprometer a qualidade da imagem. A grande import?ncia da compress?o de dados fica evidente quando se utiliza quantidade muito grande de informa??es e espa?os pequenos para armazenamento. Com esse objetivo ? que se apresenta esse trabalho no qual desenvolveu-se um m?todo para a compress?o de imagens coloridas e multiespectrais baseado na quantidade de informa??o contida em cada banda ou planos da imagem. Este m?todo foi chamado de Compress?o Auto-Adaptativa (C.A.A.), no qual cada banda da imagem ? comprimida com uma taxa de compress?o diferente, buscando um melhor resultado de forma a manter a maior parte da informa??o. A t?cnica baseia-se na compress?o com maior taxa para a banda com maior redund?ncia, ou seja, menor quantidade de informa??o e com taxas mais amenas ?s bandas com informa??o mais significativa. O CAA utiliza duas transformadas de imagens como elementos ativos da compress?o. A Transformada Cosseno Discreta (DCT) e a An?lise de Componentes Principais (PCA). A Imagem original (sem compress?o) ? processada pelo sistema CAA no espa?o RGB, sob o qual ? aplicado a transformada PCA, que leva a imagem para um novo espa?o (ou planos de dados), no qual as informa??es est?o descorrelacionadas. Neste espa?o gerado pela PCA, realiza-se a DCT em cada um dos planos individualmente, e, atrav?s de um limiar calculado em fun??o do resultado da PCA e de um par?metro de compress?o fornecido pelo usu?rio, ? que alguns elementos da matriz gerada pela DCT s?o descartados. Por fim realiza-se, respectivamente, a DCT e PCA inversas, reconstruindo assim uma aproxima??o da imagem. Quando comparada com a compress?o realizada pela tradicional JPEG (Joint Photographic Experts Group), a CAA apresenta, em m?dia, resultados cerca de 10 % melhores no que diz respeito a MSE (Mean Square Root), com duas grandes vantagens, por ser adaptativa, ? sens?vel ao tipo de imagem, ou seja, apresenta bons resultados em diversos tipos de imagens (sint?tica, paisagens, pessoas, e etc.), e, necessita apenas um par?metro de compress?o determinado pelo usu?rio
|
13 |
Uma proposta de estruturação e integração de processamento de cores em sistemas artificiais de visão. / A proposal for structuration and integration of color processing in artifical vision systems.Jander Moreira 05 July 1999 (has links)
Esta tese descreve uma abordagem para a utilização da informação de cores no sistema de visão artificial com inspiração biológica denominada Cyvis-1. Considerando-se que grande parte da literatura sobre segmentação de imagens se refere a imagens em níveis de cinza, informações cromáticas na segmentação permanecem uma área que ainda deve ser mais bem explorada e para a qual se direcionou o interesse da presente pesquisa. Neste trabalho, o subsistema de cor do Cyvis-1 é definido, mantendo-se o vínculo com os princípios que inspiram o sistema de visão como um todo: hierarquia, modularidade, especialização do processamento, integração em vários níveis, representação efetiva da informação visual e integração com conhecimento de nível alto. O subsistema de cor se insere neste escopo, propondo uma técnica para segmentação de imagens coloridas baseada em mapas auto-organizáveis para a classificação dos pontos da imagem. A segmentação incorpora a determinação do número de classes sem supervisão, tornando o processo mais independente de intervenção humana. Por este processo de segmentação, são produzidos mapas das regiões encontradas e um mapa de bordas, derivado das regiões. Uma segunda proposta do trabalho é um estudo comparativo do desempenho de técnicas de segmentação por bordas. A comparação é feita em relação a um mapa de bordas de referência e o comportamento de várias técnicas é analisado segundo um conjunto de atributos locais baseados em contrastes de intensidade e cor. Derivada desta comparação, propõe-se também uma combinação para a geração de um mapa de bordas a partir da seleção das técnicas segundo seus desempenhos locais. Finalmente, integrando os aspectos anteriores, é proposta urna estruturação do módulo de cor, adicionalmente com a aquisição de imagens, a análise de formas e o reconhecimento de objetos poliédricos. Há, neste contexto, a integração ao módulo de estéreo, que proporciona o cálculo de dados tridimensionais, essenciais para o reconhecimento dos objetos. Para cada parte deste trabalho são propostas formas de avaliação para a validação dos resultados, demonstrando e caracterizando a eficiência e as limitações de cada uma. / This thesis describes an approach to color information processing in the biologically-inspired artificial vision system named Cyvis-1. Considering that most of the current literature in image segmentation deals with gray level images, color information remains an incipient area, which has motivated this research. This work defines the color subsystem within the Cyvis-1 underlying phylosophy, whose main principles include hierarchy, modularity, processing specialization, multilevel integration, effective representation of visual information, and high-level knowledge integration. The color subsystem is then introduced according to this framework, with a proposal of a segmentation technique based on self-organizing maps. The number of regions in the image is achieved through a unsupervised clustering approach, so no human interaction is needed. Such segmentation technique produces region oriented representation of the classes, which are used to derive an edge map. Another main topic in this work is a comparative study of the edge maps produced by several edge-oriented segmentation techniques. A reference edge map is used as standard segmentation, to which other edge maps are compared. Such analysis is carried out by means of local attributes (local gray level and \"color\" contrasts). As a consequence of the comparison, a combination edge map is also proposed, based on the conditional selection of techniques considering the local attributes. Finally, the integration of two above topics is proposed, which is characterized by the design of the color subsystem of Cyvis-1, altogether with the modules for image acquisition, shape analysis and polyhedral object recognition. In such a context, the integration with the stereo subsystem is accomplished, allowing the evaluation of the three-dimensional data needed for object recognition. Assessment and validation of the three proposals were carried out, providing the means for analyzing their efficiency and limitations.
|
14 |
Segmentação e quantificação de tecidos em imagens coloridas de úlceras de perna. / Segmentation and quantification of tissues in leg ulcers color imagesAndres Anobile Perez 31 August 2001 (has links)
Neste trabalho foi desenvolvida uma metodologia de avaliação e monitoramento de pacientes com úlceras de perna baseada nas características dos tecidos internos dessas feridas. Os tecidos internos podem ser classificados como granulado, fibrina e necrosado, e a avaliação da área de cada um desses tecidos fornece para o clínico dados referentes ao estado da úlcera.A metodologia extrai essas informações a partir de imagens digitalizadas das lesões. Para tanto, a área referente à úlcera é segmentada e em seguida a área interna processada por uma rede neural, que tem o propósito de classificar cada ponto para um dos tecidos analisados. Os algoritmos desenvolvidos operam sobre imagens coloridas, já que cada tecido em uma imagem só pode ser identificado por sua cor. Este trabalho propõe ainda uma metodologia de extração de características das lesões através de uma forma não invasiva utilizando, para tanto, algoritmos de visão computacional. / The aim of this work was the development of a monitoring and evaluation methodology of leg ulcers patients based on the features of the inner tissues of these wounds. The internal tissues can be classified as granulation, slough and necrotic, and the evaluation of the area of each one of these tissues can be used by the specialist to help with the patient''s diagnosis. The methodology extracts these information from the wound digitized images. For this, the wound area is segmented and the inner region or the segmented area is processed by a neural network that classifies each point of the analyzed tissues. The developed algorithms operate on color images since each tissue in an image can only be analyzed by its colors. In this work has also proposed a feature extraction methodology of the wounds through a non-invasive way using computer vision algorithms.
|
Page generated in 0.0789 seconds