Spelling suggestions: "subject:"imagerie résolue een tempo"" "subject:"imagerie résolue enn tempo""
1 |
Etude d'un nouveau dispositif de bioimpression par laser / Study of a novel configuration of laser Assisted BioprintingAli, Muhammad 23 June 2014 (has links)
Les technologies laser sont largement utilisées dans le contexte de l'impression 3D de matériaux de toute taille ainsique pour la bioimpression des constituants de tissue biologiques. Dans ce contexte, la bioimpression par laser (LAB), basée sur le procédé LIFT, a émergé comme une technique permettant de s'affranchir des inconvénients des technologies d'impression à jet d'encre(par exemple le colmatage). La bioimpression par Laser est une technique d'écriture directe de matériaux sous forme solide ou liquide dotée d'une haute résolution spatiale. La technique permet ainsi le transfert précis de microgouttelettes (volume de l'ordre du pL) de biomatériaux et de cellules sur un substrat de réception. Dans nos travaux de recherche, afin de mieux comprendre la dynamique du processus de transfert et d'utiliser la technique en ingénierie tissulaire, nous avons avons développé une approche expérimentale basée sur une méthode d'imagerie résolue en temps. Nous avons tout d'abord caractérisé les différents régimes d'éjection afin de définir des conditions appropriées à l'impressiond'éléments biologiques. Nous avons également exploré la fenêtre d'éjection, afin d'étudier l'influence de l'énergie laser sur la dynamique de jet. Ensuite, nous avons étudié une nouvelle de configuration bioimpression par laser pour laquelle des études paramétriques impliquant l'effet de la viscosité et de la distance d'impression sur la morphologie des gouttes imprimées ont été réalisées. Cette configuration permet d'imprimer des encres biologiques en obtenant des contours très lisses et uniformes jusqu’à une grande distance de séparation (≤10 mm). Les paramètres d'impression de cellules ont aussi été analysées par TRI en fonction de la concentration cellulaire des encres. Nos résultats fournissent des renseignements clés sur l'optimisation et devraient permettre un meilleur contrôle du mécanisme de transfert du processus de LAB. Enfin à la lumière de ces études, nous proposons un mécanisme complet pour la bioimpression par laser. / Laser-based approaches are among the pioneering works in cell printing. These techniques are being extensively focussed for two or three-dimensional structures of any size in transferring pattern materials including deposition of 3D biological constructs. In this context, Laser-Assisted Bioprinting (LAB), based on Laser-Induced Forward Transfer (LIFT) has emerged as a nozzleless method to surmount the drawbacks (e.g. clogging) of inkjet printing technologies. LAB is a laser direct-write technique that offers printing micropatterns with high spatial resolution from a wide range of solid or liquid materials, such as dielectrics, biomaterials and living cells. The technique enables controlled transfer of droplets onto a receiving substrate. A typical LAB setup comprises three key components: (i) a pulsed laser source, (ii) a ribbon coated with the material to be transferred and (iii) a receiving substrate. The ribbon integrates three layers: (i) a quartz disk support transparent to laser wavelength, (ii) a thin (1–100 nm) absorbing layer (like Ti or Au), and (iii) a bioink layer (few tens of microns) incorporating the material to print. The receiving substrate is faced to the bioink and placed at 100 μm to 1 mm distance from the ribbon. Rapid thermal expansion of metallic layer (on absorbing laser pulse) propels a small volume (~pL) of the ink towards a receiving substrate. Such a metallic interlayer eliminates direct interaction between the laser beam and the bioink. Volume of deposited material depends linearly on the laser pulse energy, and that a minimum threshold energy is required for microdroplet ejection. The thickness of the absorbing layer, viscosity and thickness of the bioink, different optical parameters such as the focus spot and the laser fluence are the controlling parameters to obtain a microscopic resolution and to limit the shock inflicted on the ejected cells. In our research works, we considered experimental approach to study the physical mechanism involved in the LAB using a time-resolved imaging method in order to gain a better insight into the dynamics of the transfer process and to use the technique for printing biomaterials. First we designed and implemented a novel configuration of LAB for upward printing. Then we characterized different ejection regimes to define suitable conditions for bioprinting. We further explored jetting window to study the influence of laser energy on jet dynamics. Ejection dynamics has been investigated by temporal evolution of the liquid jet for their potential use in cell printing. In addition parametric studies like effect of viscosity and printing distance on the morphology of the printed drops were conducted to explore jetting “window”. This configuration allows debris-free printing of fragile bioinks with extremely smooth and uniform edges at larger separation distance (ranging from 3 to 10mm). Material criteria required for realization of the cell printing are discussed and supported by experimental observations obtained by TRI investigation of cell printing from donors with different cell concentrations. These results provide key insights into optimization and better control of transfer mechanism of LAB. Finally, in the light of these studies, a comprehensive mechanism is proposed for printing micro-drops by LAB.
|
2 |
Amplification de l'énergie d'une source VUV cohérente à 125 nm dans une plume d'ablation de mercurePhilippet, Laurent 12 November 2009 (has links) (PDF)
Ce travail est consacré à l'étude d'une technique originale basée sur l'ablation laser du mercure liquide dans le but d'augmenter l'efficacité de conversion d'une source VUV cohérente à 125 nm. Ce rayonnement est obtenu par somme de fréquences résonnante à deux photons (6s 1S0 -> 7s 1S0) dans une vapeur de mercure à température ambiante. Les paramètres expérimentaux tels que la géométrie de la plume d'ablation, l'énergie des faisceaux fondamentaux, la densité d'énergie du laser d'ablation et la pression d'un gaz neutre (ici l'argon qui permet de confiner la plume) ont été optimisées et ont amené une amplification d'un ordre de grandeur (jusqu'à deux ordres de grandeur pour des intensités réduites) soit une énergie de 250 nJ. Afin de mieux comprendre les phénomènes physiques mis en jeu, une caractérisation complète de la plume a été menée grâce à des expériences d'imagerie et de spectroscopie résolues en temps. La luminescence propre de la plume ainsi que la fluorescence induite par l'absorption de deux photons (sur la raie 6s 1S0 -> 7s 1S0) nous ont permis de connaître la composition de la plume, d'estimer sa température, les vitesses des différentes espèces et la densité d'atomes à l'état fondamental. Un étalonnage réalisé à partir du signal de somme de fréquences a permis d'obtenir une cartographie du nombre absolu d'atomes de mercure dans l'état fondamental. Nous avons également montré que la manipulation du faisceau VUV est rendue plus simple dans une boîte à gants (ici remplie d'argon) que dans le vide. Une structure périodique, de 100 µm de pas, a été réalisée par lithographie sur du PMMA et des premiers pas vers la lithographie par interférométrie ont été franchis.
|
3 |
Etude des processus physiques mis en jeu lors de la microimpression d'éléments biologiques assistée par laserSouquet, Agnès 24 February 2011 (has links)
Parallèlement à l’impression jet d’encre et au bioplotting, l’impression d'éléments biologiques assistée par laser (Laser Assisted Bioprinting : LAB) qui utilise le transfert vers l’avant induit par laser (Laser Induced Forward Transfer : LIFT) a émergé comme une méthode alternative dans l’assemblage et la micro–structuration de biomatériaux et de cellules. Le LAB est une technique d’écriture directe qui offre la possibilité d’imprimer des motifs avec une haute résolution spatiale à partir d'une large gamme de matériaux solides ou liquides, tels que des diélectriques, des biomolécules et des cellules vivantes en solution.Dans nos travaux de recherche, nous avons considéré une approche expérimentale et numérique pour étudier les mécanismes physiques mis en jeu lors de la microimpression d’éléments biologiques assistée par laser. Dans un premier temps nous avons défini les paramètres rhéologiques des bioencres et les conditions de transfert (composition, épaisseur et viscosité de la bioencre et énergie laser). Puis nous avons mené une analyse statistique du volume des gouttelettes déposées pour quatre viscosités de bioencre, cinq épaisseurs de bioencre et cinq énergies laser. Ensuite nous avons conçu et mis en place un système d’imagerie résolue en temps pour étudier les effets de la viscosité sur la dynamique de l’éjection. Nous avons ainsi différencié trois régimes d'éjection en fonction de l'énergie laser déposée dans la couche absorbante, de la viscosité et de l'épaisseur de la bioencre. Parallèlement, un modèle numérique a été mis en place pour comprendre et prédire la dynamique de l’éjection en fonction de paramètres multiples : choix et épaisseur de la couche absorbante, épaisseur de la couche de bioencre, énergie laser déposée. Enfin, au regard de ces études, nous proposons un mécanisme d'éjection des microgouttelettes intervenant au cours du procédé de microimpression assistée par laser. / Over this decade, cell printing strategy has emerged as one of the promising approaches to organize cells in two and three dimensional engineered tissues. In parallel with ink-jet printing and bioplotting, Laser Assisted Bioprinting (LAB) using Laser-Induced Forward Transfer (LIFT) has emerged as an alternative method in the assembly and micropatterning of biomaterials and cells. LAB is a laser direct-write technique that offers the possibility of printing micropatterns with high spatial resolution from a wide range of solid or liquid materials, such as dielectrics, biomolecules and living cells in solution. In our research works, we considered an experimental and numerical approach to study the physical mechanisms involved in the biological elements microprinting laser assisted.First we defined the rheological parameters of bioinks and the transfer conditions (composition, thickness and viscosity of the bioink and laser energy). Then we led a statistical analysis of the volume of the transfer droplets for four viscosities of bioink, five thicknesses of bioink and five laser energies. Then we designed and implemented a system for time resolved imaging to study the effects of viscosity on the dynamics of the ejection. Thus we have differentiated three ejection regimes in function of the laser energy released in the absorbing layer, the visocsity and the thickness of the bioink. In parallel, a numerical model was developed to understand and predict the dynamics of the ejection parameters according to multiple choice and thickness of the absorbing layer, thickness of the layer bioencre, energy deposited. Finally, with regard to these studies, we propose a mechanism for ejecting droplets involved in the process of laser-assisted microprinting.
|
4 |
Décharge à courant alternatif (AC) dans l’air et en contact avec l’eau : caractérisation fondamentale et application au traitement des eauxDiamond, James 08 1900 (has links)
Les décharges en phase gazeuse couplées avec les liquides est une branche relativement nouvelle de la physique des plasmas. Le développement des applications technologiques basées sur les plasmas-liquides dans des domaines tels que la médecine, le traitement de matériaux, la remédiation environnementale, etc., est très prometteur. Cependant, la compréhension de la nature de l’interaction plasma-liquide est indispensable pour pouvoir développer les applications. Dans ce mémoire, composé de trois sections, nous avons étudié l’interaction d’un plasma d’air, généré par une décharge à courant alternatif (AC), et couplé directement avec l’eau. Tout d’abord, une présentation générale des systèmes plasmas-liquides et ses applications pour le traitement des eaux est faite dans le Chapitre 1. Chapitre 2, un article publié dans Journal of Physics D: Applied Physics, est une étude de la dynamique spatio-temporelle d’un plasma d’air produit par une décharge AC entre une électrode pointe et la surface de l’eau. Chapitre 3, un article publié dans Plasma Chemistry and Plasma Processing, représente une investigation sur les différents modes de décharges AC en contact avec l’eau et sur l’efficacité de chaque mode pour dégrader un polluant organique modèle (bleue de méthylène). / Gas phase discharges in contact with liquids is a relatively novel research field in plasma physics. Plasma-liquid systems are very promising for various technological applications, such as medicine, solid-state physics, and environmental remediation. However, further development of the applications requires understanding of plasma-liquid interactions. In this thesis, interaction between an air plasma directly coupled in contact with water is studied. This thesis includes three chapters. Chapter 1 presents a general introduction of the plasma-liquid interactions and their applications in water treatment. Chapter 2, an article published in Journal of Physics D: Applied Physics, is an investigation of the spatial and temporal dynamics of an air plasma produced by AC discharge between a pin electrode and water. Chapter 3, an article published in Plasma Chemistry and Plasma Processing, is an investigation of the various modes produced by an AC-driven air discharge in contact with water. The electrical characteristics of each discharge mode are presented in detail, and variations in water properties (namely water acidity and conductivity) are also discussed. The efficiency of each discharge mode on the degradation rate of methylene blue, a standard pollutant, is also reported.
|
Page generated in 0.0798 seconds