Spelling suggestions: "subject:"imagerie duu colorant sensible au voltage"" "subject:"imagerie dud colorant sensible au voltage""
1 |
Dynamics of hippocampal networks revealed by voltage sensitive dye imaging / Dynamiques des réseaux hippocampiques révélées par imagerie de coloration sensible au potentiel (VSDI)Colavita, Michelangelo 18 December 2015 (has links)
Dans le but de mieux comprendre le fonctionnement du cerveau nous devons examiner les domaines structuraux qui le composent, de la simple cellule à des régions entières du cerveau interconnectées. Cependant, bien que le fonctionnement d’une ou plusieurs cellules soit relativement bien connu, il n’y a que peu d’informations concernant les groupements de neurones interagissant fonctionnellement dans une même tâche, les réseaux neuronaux. De plus, l'activité équilibrée et concertée des réseaux excitateurs et inhibiteurs joue un rôle clé pour les intégrations corticales appropriées. Par ailleurs, il existe plusieurs outils afin d’enregistrer l’activité des réseaux excitateurs, ce qui n’est pas le cas pour les réseaux inhibiteurs. L’imagerie du colorant sensible au voltage (VSDI) est une technique permettant l’enregistrement de l’activité neuronale au moyen d’une émission de fluorescence proportionnelle au changement de potentiel de membrane. Par rapport aux autres techniques employant des électrodes, le VSDI permet l’enregistrement non invasif de l’activité de centaines de sites en même temps. Au cours des dernières décennies, le VSDI a été largement utilisé tant in vitro qu’in vivo pour étudier l’activité d’une cellule et des réseaux excitateurs. Néanmoins, en utilisant le VSDI, les recherches quant à l’activité des réseaux excitateurs ont été principalement réalisées par quantification d’émission de fluorescence en définissant des régions d’intérêts à des temps fixes, alors que l’activité inhibitrice n’a été évaluée qu’à l’échelle cellulaire. La première approche ne permet pas l’obtention de toutes les informations de la dynamique de propagation de la transmission glutamatergique du fait qu’elle ne prend en considération ni la vitesse ni la direction de propagation du signal. En revanche, la seconde approche n’offre pas la possibilité d’étudier l’activité du réseau inhibiteur ce qui serait toutefois important de définir du fait de la propagation spatiale extensive des interneurones au sein des aires corticales. Durant mon doctorat, le but de mon travail a été d’étudier en détail les réseaux neuronaux excitateurs et inhibiteurs de l’aire CA1 de l’hippocampe de souris à l’aide du VSDI. Pour les étudier de façon plus compréhensive, en collaboration avec une équipe de mathématicien, nous avons développé un algorithme permettant de mesurer la vitesse et la direction de propagation du signal VSDI, ce qui représente une nouvelle méthode pour analyser le flux optique. Après la validation réussie de l’algorithme avec des données de substitution pour tester sa précision, nous avons analysé deux séries d’expériences dans lesquelles l’activité des réseaux excitateurs a été manipulée soit par augmentation de l’intensité de stimulation passant de 10 à 30 Volts ou en bloquant la transmission GABAergique avec la picrotoxine, un antagoniste du récepteur GABAA. Les résultats de ces manipulations montrent une diminution significative de la vitesse alors que l’application de picrotoxine modifie de façon significative la direction de propagation, ce qui rend le signal de dépolarisation médié par le VSDI moins dispersé par rapport au contrôle. L’utilisation du VSDI a permis l’entière caractérisation des signaux hyperpolarisants médiés par les récepteurs GABAA dans toutes les sous-couches de CA1 (champ IPSP), offrant ainsi une nouvelle façon d’étudier les événements inhibiteurs à l’échelle d’un réseau. De plus, j’ai montré qu’en activant les récepteurs mGluR5, j’étais capable d’augmenter de façon durable le champ IPSP du VSDI, avec la durée et l’ampleur au niveau des sous-couches spécifiques de CA1. Globalement, je présente dans cette thèse de nouvelles méthodes et nouveaux résultats qui peuvent représenter une avancée dans la quête d’une meilleure compréhension des réseaux neuronaux, excitateurs et inhibiteurs, ce qui, espérons-le, pourra contribuer à réduire l’écart de connaissance entre l’activité d’une seule cellule et celle du comportement. / In order to better understand brain functioning we need to investigate all the structural domains present in it, from single cell to interconnected entire brain regions. However, while our knowledge in terms of single/few cells functioning is vast, very little is known about neuronal networks, which are interacting collections of neurons functionally related to the same task. Moreover, the balanced and concerted activity of excitatory and inhibitory networks plays a key role for proper cortical computations. However, while exist several tools to record excitatory networks activity, this is not the case for inhibitory networks. Voltage sensitive dye imaging (VSDI) is a technique that allows the recording of neuronal activity by mean of proportional emission of fluorescence according to changes in membrane potential. The advantage of using VSDI over other recording techniques using electrodes is that VSDI allows not invasive recording of neuronal activity from hundreds of sites at the same time. During my doctoral course I aimed at studying in detail excitatory and inhibitory neuronal networks in the CA1 area of mouse hippocampus with VSDI. To study excitatory networks more comprehensively, in collaboration with a team of mathematicians, we developed a mathematical algorithm that allowed measuring the velocity and the direction of spreading of the VSDI signal and it represents a new method to determine an optical flow. After successful validation of the algorithm with surrogate data to test its accuracy, we analysed two set of experiments in which network excitatory activity has been manipulated either by increasing Schaffer’s collaterals stimulation intensity or by blocking GABAergic transmission with the GABAA receptor antagonist picrotoxin in order to increase the depolarization in the CA1 region of the hippocampus. The results of these manipulations significantly decreased signal velocity whereas picrotoxin application significantly modified the direction of spreading, making the depolarization-mediated VSDI signal less dispersed compared to control. Using VSDI I was able to fully characterize GABAA receptor-mediated hyperpolarizing signals in all the CA1 sublayers (field IPSPs), thus providing a new way of monitoring inhibitory events at network level. Moreover, I found that the activation of mGluR5 receptors induced an increase in a long-lasting manner of the VSDI-recorded field IPSPs, with duration and magnitude that relied on the specific CA1 sublayer considered. Overall, my work shows new methodologies and new findings that may represent a step forward in the quest for a better understanding of neuronal networks, both excitatory as well as inhibitory, which hopefully can contribute to reduce the gap of knowledge between single cell activity and behaviour.
|
Page generated in 0.1449 seconds