Spelling suggestions: "subject:"1mages ett variété riemanniennes"" "subject:"1mages ett variété riemannienne""
1 |
Morphologie, Géométrie et Statistiques en imagerie non-standard / Morphology, Geometry and Statistics in non-standard imagingChevallier, Emmanuel 18 November 2015 (has links)
Le traitement d'images numériques a suivi l'évolution de l'électronique et de l'informatique. Il est maintenant courant de manipuler des images à valeur non pas dans {0,1}, mais dans des variétés ou des distributions de probabilités. C'est le cas par exemple des images couleurs où de l'imagerie du tenseur de diffusion (DTI). Chaque type d'image possède ses propres structures algébriques, topologiques et géométriques. Ainsi, les techniques existantes de traitement d'image doivent être adaptés lorsqu'elles sont appliquées à de nouvelles modalités d'imagerie. Lorsque l'on manipule de nouveaux types d'espaces de valeurs, les précédents opérateurs peuvent rarement être utilisés tel quel. Même si les notions sous-jacentes ont encore un sens, un travail doit être mené afin de les exprimer dans le nouveau contexte. Cette thèse est composée de deux parties indépendantes. La première, « Morphologie mathématiques pour les images non standards », concerne l'extension de la morphologie mathématique à des cas particuliers où l'espace des valeurs de l'image ne possède pas de structure d'ordre canonique. Le chapitre 2 formalise et démontre le problème de l'irrégularité des ordres totaux dans les espaces métriques. Le résultat principal de ce chapitre montre qu'étant donné un ordre total dans un espace vectoriel multidimensionnel, il existe toujours des images à valeur dans cet espace tel que les dilatations et les érosions morphologiques soient irrégulières et incohérentes. Le chapitre 3 est une tentative d'extension de la morphologie mathématique aux images à valeur dans un ensemble de labels non ordonnés.La deuxième partie de la thèse, « Estimation de densités de probabilités dans les espaces de Riemann » concerne l'adaptation des techniques classiques d'estimation de densités non paramétriques à certaines variétés Riemanniennes. Le chapitre 5 est un travail sur les histogrammes d'images couleurs dans le cadre de métriques perceptuelles. L'idée principale de ce chapitre consiste à calculer les histogrammes suivant une approximation euclidienne local de la métrique perceptuelle, et non une approximation globale comme dans les espaces perceptuels standards. Le chapitre 6 est une étude sur l'estimation de densité lorsque les données sont des lois Gaussiennes. Différentes techniques y sont analysées. Le résultat principal est l'expression de noyaux pour la métrique de Wasserstein. / Digital image processing has followed the evolution of electronic and computer science. It is now current to deal with images valued not in {0,1} or in gray-scale, but in manifolds or probability distributions. This is for instance the case for color images or in diffusion tensor imaging (DTI). Each kind of images has its own algebraic, topological and geometric properties. Thus, existing image processing techniques have to be adapted when applied to new imaging modalities. When dealing with new kind of value spaces, former operators can rarely be used as they are. Even if the underlying notion has still a meaning, a work must be carried out in order to express it in the new context.The thesis is composed of two independent parts. The first one, "Mathematical morphology on non-standard images", concerns the extension of mathematical morphology to specific cases where the value space of the image does not have a canonical order structure. Chapter 2 formalizes and demonstrates the irregularity issue of total orders in metric spaces. The main results states that for any total order in a multidimensional vector space, there are images for which the morphological dilations and erosions are irregular and inconsistent. Chapter 3 is an attempt to generalize morphology to images valued in a set of unordered labels.The second part "Probability density estimation on Riemannian spaces" concerns the adaptation of standard density estimation techniques to specific Riemannian manifolds. Chapter 5 is a work on color image histograms under perceptual metrics. The main idea of this chapter consists in computing histograms using local Euclidean approximations of the perceptual metric, and not a global Euclidean approximation as in standard perceptual color spaces. Chapter 6 addresses the problem of non parametric density estimation when data lay in spaces of Gaussian laws. Different techniques are studied, an expression of kernels is provided for the Wasserstein metric.
|
Page generated in 0.0682 seconds