• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vision numérique avec peu d'étiquettes : segmentation d'objets et analyse de l'impact de la pluie

Tremblay, Maxime 27 January 2024 (has links)
Un besoin ayant toujours existé dans le domaine de la vision numérique est celui d'avoir accès à des ensembles d'images annotées. Les avancements scientifiques et technologiques ont exacerbé les besoins en données étiquetées; un modèle d'apprentissage profond peut nécessiter des milliers, voire des centaines de milliers (dépendamment de la complexité du problème), d'images étiquetées. Cela peut causer un problème puisque générer de grands ensembles de données étiquetées est une tâche longue et ardue. Est-il possible de travailler en vision numérique sans avoir à collecter et étiqueter des ensembles de données de plus en plus grands ? Dans le cadre de cette thèse, nous tentons de répondre à cette question sur deux fronts différents. Premièrement, nous avons développé une approche de détection et segmentation d'objets nécessitant peu de données d'entraînement. Cette approche, inspirée des modèles par les bag-of-words, modélise l'apparence et la forme des objets de façon éparse; la modélisation de la forme se fait par l'entremise d'un nouveau descripteur de forme. Deuxièmement, nous nous sommes penchés sur le fait que certains ensembles de données sont difficilement capturables et étiquetables. Nous nous sommes concentrés sur un exemple particulier, c'est-à-dire générer un ensemble d'images de scènes extérieures avec de la pluie dont les annotations consistent au taux de précipitation (mm/h). Notre solution consiste à augmenter des images réelles avec de la pluie synthétique. Si ces images augmentées sont suffisamment réalistes, il est possible d'expérimenter sur celles-ci comme si elles étaient des images de pluie réelle. Dans nos expérimentations, nous avons évalué l'effet de la pluie sur différents algorithmes de vision numérique et nous avons augmenté la robustesse de ceux-ci sur des images contenant de la vraie pluie.

Page generated in 0.072 seconds