• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planar Raster-scanning System for Near-field Microwave Imaging

XU, HAOHAN 10 1900 (has links)
<p>Microwave imaging is a promising new imaging modality under research for breast cancer detection. This technique images/reconstructs the internal dielectric composition of the breasts and relies on the contrast between the dielectric properties of malignant tissues and healthy tissues to pinpoint the abnormality. Over the years, new imaging algorithms were proposed and many imaging systems were developed in accordance. However, none of the proposed systems has made it to the market.</p> <p>In this thesis, a prototype planar raster-scanning system for near-field microwave imaging is presented. This system measures the scattering parameters while scanning a 2-D plane over the imaged object (phantom) in a raster pattern. The development of this system aids significantly in our research of microwave imaging for breast cancer detection because it enables us to carry out numerous experiments and to develop and verify new imaging algorithms.</p> <p>Our contribution also lies in conducting a comprehensive study of the dynamic range of the developed system. Each source of noise/uncertainty from the system is identified and studied for the benefits of future improvements.</p> <p>Typical imaging results of phantoms with different dielectric properties are also provided to showcase the performance of the developed system.</p> / Master of Applied Science (MASc)

Page generated in 0.1798 seconds