Spelling suggestions: "subject:"amaging systems.statistical models"" "subject:"amaging systems.theoretical models""
1 |
STATIONARY OPTICAL PROJECTORSGoodman, Douglas Seymore January 1979 (has links)
No description available.
|
2 |
MODELS OF HUMAN VISION IN DIGITAL IMAGE BANDWIDTH COMPRESSIONGranrath, Douglas James January 1979 (has links)
No description available.
|
3 |
Contrast compression and edge enhancement in imaging systemsEigler, Lynne Christine January 1979 (has links)
No description available.
|
4 |
Object detection in low resolution video sequencesUnknown Date (has links)
With augmenting security concerns and decreasing costs of surveillance and computing equipment, research on automated systems for object detection has been increasing, but the majority of the studies focus their attention on sequences where high resolution objects are present. The main objective of this work is the detection and extraction of information of low resolution objects (e.g. objects that are so far away from the camera that they occupy only tens of pixels) in order to provide a base for higher level information operations such as classification and behavioral analysis. The system proposed is composed of four stages (preprocessing, background modeling, information extraction, and post processing) and uses context based region of importance selection, histogram equalization, background subtraction and morphological filtering techniques. The result is a system capable of detecting and tracking low resolution objects in a controlled background scene which can be a base for systems with higher complexity. / by Diego F. Pava. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
5 |
A systematic evaluation of object detection and recognition approaches with context capabilitiesUnknown Date (has links)
Contemporary computer vision solutions to the problem of object detection aim at incorporating contextual information into the process. This thesis proposes a systematic evaluation of the usefulness of incorporating knowledge about the geometric context of a scene into a baseline object detection algorithm based on local features. This research extends publicly available MATLABRª implementations of leading algorithms in the field and integrates them in a coherent and extensible way. Experiments are presented to compare the performance and accuracy between baseline and context-based detectors, using images from the recently published SUN09 dataset. Experimental results demonstrate that adding contextual information about the geometry of the scene improves the detector performance over the baseline case in 50% of the tested cases. / by Rafael J. Giusti Urbina. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
|
6 |
Event detection in surveillance videoUnknown Date (has links)
Digital video is being used widely in a variety of applications such as entertainment, surveillance and security. Large amount of video in surveillance and security requires systems capable to processing video to automatically detect and recognize events to alleviate the load on humans and enable preventive actions when events are detected. The main objective of this work is the analysis of computer vision techniques and algorithms used to perform automatic detection of events in video sequences. This thesis presents a surveillance system based on optical flow and background subtraction concepts to detect events based on a motion analysis, using an event probability zone definition. Advantages, limitations, capabilities and possible solution alternatives are also discussed. The result is a system capable of detecting events of objects moving in opposing direction to a predefined condition or running in the scene, with precision greater than 50% and recall greater than 80%. / by Ricardo Augusto Castellanos Jimenez. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
Page generated in 0.1124 seconds