Spelling suggestions: "subject:"amino esters"" "subject:"imino esters""
1 |
Imino esters as useful precursors for the synthesis of glutamate derivatives and functionalization of carbon materialsRodríguez-Flórez, Lesly V. 27 May 2024 (has links)
The present doctoral thesis focused mainly on the use of α-imino esters in 1,4-conjugated addition reactions (Michael-type additions) which have been optimized using phosphines acting as organocatalysts. On the other hand, α-imino esters have been evaluated in heterogeneous systems functionalizing carbonaceous matrices through 1,3-dipolar cycloaddition reactions and their subsequent application in catalysis. Chapter 1 describes a new approach for the preparation of glutamates and pyroglutamates surrogates without the use of bases, through Michael-type addition reactions between different imino esters and conjugated alkenes in the presence of a phosphine that acts as an organocatalyst. Chapter 2 reports the results obtained from the functionalization of single-walled nanotubes (SWCNT) with different imino esters through the microwave-assisted 1,3-dipolar cycloaddition reaction; the pyrrolidine rings-functionalized material was characterized by using several techniques and subsequently the synthesis of a heterogeneous catalyst using an iridium complex was afforded. This supported catalyst was evaluated, as a proof of concept, in the hydrogen-transfer reaction of acetophenone to yield 1-phenyletanol. In Chapter 3 the covalent functionalization of multilayer graphene (MLG) via microwave-assisted 1,3-dipolar cycloaddition with azomethine ylides generated by thermal 1,2-prototropy from various imino esters is described. In particular, this strategy allows to anchor an imino ester containing a 2,2’-bipyridine unit in order to obtain a functionalized material capable of assembling a ruthenium atom to achieve a heterogeneous supported complex. This new catalyst was tested, as a proof of concept, in the photocatalytic aerobic oxidative hydroxylation reaction of 4-methoxyphenylboronic acid. / The present work has been possible thanks to the Spanish Ministerio de Ciencia, Innovación y Universidades (project RED2018-102387-T) the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) (MCIN/AEI/10.13039/501100011033) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects CTQ2017-82935-P, PID2019-107268GB-I00 and PID2021-123079OB-I00), the Generalitat Valenciana (IDIFEDER/2021/013, GVACOVID19/2021/079 and CIDEGENT/2020/058), Medalchemy S. L. (Medalchemy-18T) and the University of Alicante (VIGROB-068, UAUSTI21-05). Additionally, I would like to thanks the Generalitat Valenciana for the Grisolía’s fellowship (GRISOLIAP/2020/111) from the Santiago Grisolía program and for the CIBEFP/2022/17 grant to carry out a three-months research stay in the Department of chemical and pharmaceutical sciences at the University of Trieste-Italy.
|
Page generated in 0.0731 seconds