Spelling suggestions: "subject:"immersion temperature"" "subject:"lmmersion temperature""
1 |
Efeitos da imersão no meio líquido na recuperação de exercício físico anaeróbico sobre o desempenho e o comportamento de parâmetros fisiológicos de atletas / Effects of immersion during recovery from anaerobic exercise about physical performance and physiological variablesCoertjens, Marcelo January 2007 (has links)
Introdução: Existem dúvidas quanto à validade da utilização da imersão no meio líquido como recurso para acelerar o período de recuperação passiva após a realização de exercícios anaeróbicos. Objetivo: Verificar se a imersão no meio líquido em diferentes temperaturas acelera a recuperação de variáveis fisiológicas após exercício anaeróbico e melhora o desempenho físico subseqüente. Métodos: 16 ciclistas e 5 triatletas treinados do sexo masculino (idade: 26,9 ± 5,8 anos, massa corporal: 72,3 ± 7,9 kg e estatura: 175,7 ± 7,7 cm) foram convidados para três visitas ao laboratório. Em cada visita foram realizados dois Testes de Wingate (TW) em cicloergômetro seguidos por recuperação passiva que poderia ser fora da água, imerso a 20ºC ou a 40ºC com duração de 10 minutos. Para cada visita foi realizado um tipo de recuperação previamente randomizado. Valores de constante de tempo (CT), média do último minuto de recuperação (Média_10min) e área foram calculados para variáveis ventilatórias consumo de oxigênio (VO2), produção de dióxido de carbono (VCO2), volume expirado (VE), taxa de troca respiratória (TTR) e freqüência cardíaca (FC). Amostras de sangue foram coletas para análise do lactato [LAC] sangüíneo em intervalos de 2 min. Valores de pico de potência (PP), potência média (PM), trabalho total (TT) e índice de fadiga (IF) foram coletados durante os TWs para avaliação do desempenho. Uma ANOVA para medidas repetidas (Modelos Mistos) foi realizada tendo-se como fatores Tipo de Recuperação, Teste e Tempo. significativamente (p < 0,05) a Média_10min (VO2 +16%, VCO2 +10%, VE +14%, FC +15%), os valores de área (VO2 +31%, VCO2 +21%, VE +20%, FC +22%) e CT_VO2 (+18%), mas diminuiu os valores de CT_FC (-37%). O [LAC] não apresentou diferenças entre os tipos de recuperação. A imersão a 20ºC deteriorou em 2,4% os níveis de potência e melhorou em 2,2% na água a 40ºC (p < 0,01). Conclusão: Enquanto a utilização da imersão durante curtos períodos de recuperação de exercício anaeróbico retardou a recuperação fisiológica, do ponto de vista do desempenho, trouxe melhorias na água quente e deterioração na água fria. / Introduction: Uncertainties exist regarding the use of immersion to accelerate passive recovery after anaerobic exercise. Objective: To assess if immersion at different temperatures accelerates the recovery of baseline physiological variables after anaerobic exercise and improves subsequent physical performance. Methodology: Sixteen male trained cyclists and five male trained triathletes (average age, 26,9 ± 5,8 y, mean body mass 72,3 ± 7,9 kg and average height 175,7 ± 7,7 cm) were subjected, on three separate occasions, to two Wingate Anaerobic Tests (WAnT) using a bicycle ergometer to measure mean power output (MPO), peak power output (PPO), total work (TW) and fatigue index (FI). Each WAnT test was followed by 10 minutes passive recovery, either unimmersed or immersed at 20 ºC or 40 ºC (randomly selected). Blood was collected every two-minutes during recovery for lactate analysis. Oxygen consumption (VO2), carbon dioxide production (VCO2), expired volume (VE), respiratory exchange rate (RER) and heart rate (HR) were measured. During the last minute of recovery ten-minute mean (Mean10min) values were calculated, graphs being plotted to estimate time constants (TC) and the area under the curve (AUC) for each parameter. Data were analyzed using a mixed-model repeated-measurement ANOVA with type of recovery, test and time as factors. Results: Immersion at 40 ºC produced a 2.2% improvement in power output during the second WAnT test while at 20 ºC there was a 2.4% decrease in power output (p < 0.01). Compared to the unimmersed values, immersion significantly increased (p < 0.05) the Mean 10min (VO2 +16%, VCO2 +10%, VE +14%, HR +15%), AUC (VO2 +31%, VCO2 +21%, VE +20%, HR +22%) and TC VO2 (+18%) values but decreased the TC HR value (-37%). There was no apparent effect on serum lactate. Conclusion: Immersion during short recovery periods after anaerobic exercise delayed physiological recovery. Performance decreased after immersion at 20 °C but increased at 40 ºC.
|
2 |
Efeitos da imersão no meio líquido na recuperação de exercício físico anaeróbico sobre o desempenho e o comportamento de parâmetros fisiológicos de atletas / Effects of immersion during recovery from anaerobic exercise about physical performance and physiological variablesCoertjens, Marcelo January 2007 (has links)
Introdução: Existem dúvidas quanto à validade da utilização da imersão no meio líquido como recurso para acelerar o período de recuperação passiva após a realização de exercícios anaeróbicos. Objetivo: Verificar se a imersão no meio líquido em diferentes temperaturas acelera a recuperação de variáveis fisiológicas após exercício anaeróbico e melhora o desempenho físico subseqüente. Métodos: 16 ciclistas e 5 triatletas treinados do sexo masculino (idade: 26,9 ± 5,8 anos, massa corporal: 72,3 ± 7,9 kg e estatura: 175,7 ± 7,7 cm) foram convidados para três visitas ao laboratório. Em cada visita foram realizados dois Testes de Wingate (TW) em cicloergômetro seguidos por recuperação passiva que poderia ser fora da água, imerso a 20ºC ou a 40ºC com duração de 10 minutos. Para cada visita foi realizado um tipo de recuperação previamente randomizado. Valores de constante de tempo (CT), média do último minuto de recuperação (Média_10min) e área foram calculados para variáveis ventilatórias consumo de oxigênio (VO2), produção de dióxido de carbono (VCO2), volume expirado (VE), taxa de troca respiratória (TTR) e freqüência cardíaca (FC). Amostras de sangue foram coletas para análise do lactato [LAC] sangüíneo em intervalos de 2 min. Valores de pico de potência (PP), potência média (PM), trabalho total (TT) e índice de fadiga (IF) foram coletados durante os TWs para avaliação do desempenho. Uma ANOVA para medidas repetidas (Modelos Mistos) foi realizada tendo-se como fatores Tipo de Recuperação, Teste e Tempo. significativamente (p < 0,05) a Média_10min (VO2 +16%, VCO2 +10%, VE +14%, FC +15%), os valores de área (VO2 +31%, VCO2 +21%, VE +20%, FC +22%) e CT_VO2 (+18%), mas diminuiu os valores de CT_FC (-37%). O [LAC] não apresentou diferenças entre os tipos de recuperação. A imersão a 20ºC deteriorou em 2,4% os níveis de potência e melhorou em 2,2% na água a 40ºC (p < 0,01). Conclusão: Enquanto a utilização da imersão durante curtos períodos de recuperação de exercício anaeróbico retardou a recuperação fisiológica, do ponto de vista do desempenho, trouxe melhorias na água quente e deterioração na água fria. / Introduction: Uncertainties exist regarding the use of immersion to accelerate passive recovery after anaerobic exercise. Objective: To assess if immersion at different temperatures accelerates the recovery of baseline physiological variables after anaerobic exercise and improves subsequent physical performance. Methodology: Sixteen male trained cyclists and five male trained triathletes (average age, 26,9 ± 5,8 y, mean body mass 72,3 ± 7,9 kg and average height 175,7 ± 7,7 cm) were subjected, on three separate occasions, to two Wingate Anaerobic Tests (WAnT) using a bicycle ergometer to measure mean power output (MPO), peak power output (PPO), total work (TW) and fatigue index (FI). Each WAnT test was followed by 10 minutes passive recovery, either unimmersed or immersed at 20 ºC or 40 ºC (randomly selected). Blood was collected every two-minutes during recovery for lactate analysis. Oxygen consumption (VO2), carbon dioxide production (VCO2), expired volume (VE), respiratory exchange rate (RER) and heart rate (HR) were measured. During the last minute of recovery ten-minute mean (Mean10min) values were calculated, graphs being plotted to estimate time constants (TC) and the area under the curve (AUC) for each parameter. Data were analyzed using a mixed-model repeated-measurement ANOVA with type of recovery, test and time as factors. Results: Immersion at 40 ºC produced a 2.2% improvement in power output during the second WAnT test while at 20 ºC there was a 2.4% decrease in power output (p < 0.01). Compared to the unimmersed values, immersion significantly increased (p < 0.05) the Mean 10min (VO2 +16%, VCO2 +10%, VE +14%, HR +15%), AUC (VO2 +31%, VCO2 +21%, VE +20%, HR +22%) and TC VO2 (+18%) values but decreased the TC HR value (-37%). There was no apparent effect on serum lactate. Conclusion: Immersion during short recovery periods after anaerobic exercise delayed physiological recovery. Performance decreased after immersion at 20 °C but increased at 40 ºC.
|
3 |
Efeitos da imersão no meio líquido na recuperação de exercício físico anaeróbico sobre o desempenho e o comportamento de parâmetros fisiológicos de atletas / Effects of immersion during recovery from anaerobic exercise about physical performance and physiological variablesCoertjens, Marcelo January 2007 (has links)
Introdução: Existem dúvidas quanto à validade da utilização da imersão no meio líquido como recurso para acelerar o período de recuperação passiva após a realização de exercícios anaeróbicos. Objetivo: Verificar se a imersão no meio líquido em diferentes temperaturas acelera a recuperação de variáveis fisiológicas após exercício anaeróbico e melhora o desempenho físico subseqüente. Métodos: 16 ciclistas e 5 triatletas treinados do sexo masculino (idade: 26,9 ± 5,8 anos, massa corporal: 72,3 ± 7,9 kg e estatura: 175,7 ± 7,7 cm) foram convidados para três visitas ao laboratório. Em cada visita foram realizados dois Testes de Wingate (TW) em cicloergômetro seguidos por recuperação passiva que poderia ser fora da água, imerso a 20ºC ou a 40ºC com duração de 10 minutos. Para cada visita foi realizado um tipo de recuperação previamente randomizado. Valores de constante de tempo (CT), média do último minuto de recuperação (Média_10min) e área foram calculados para variáveis ventilatórias consumo de oxigênio (VO2), produção de dióxido de carbono (VCO2), volume expirado (VE), taxa de troca respiratória (TTR) e freqüência cardíaca (FC). Amostras de sangue foram coletas para análise do lactato [LAC] sangüíneo em intervalos de 2 min. Valores de pico de potência (PP), potência média (PM), trabalho total (TT) e índice de fadiga (IF) foram coletados durante os TWs para avaliação do desempenho. Uma ANOVA para medidas repetidas (Modelos Mistos) foi realizada tendo-se como fatores Tipo de Recuperação, Teste e Tempo. significativamente (p < 0,05) a Média_10min (VO2 +16%, VCO2 +10%, VE +14%, FC +15%), os valores de área (VO2 +31%, VCO2 +21%, VE +20%, FC +22%) e CT_VO2 (+18%), mas diminuiu os valores de CT_FC (-37%). O [LAC] não apresentou diferenças entre os tipos de recuperação. A imersão a 20ºC deteriorou em 2,4% os níveis de potência e melhorou em 2,2% na água a 40ºC (p < 0,01). Conclusão: Enquanto a utilização da imersão durante curtos períodos de recuperação de exercício anaeróbico retardou a recuperação fisiológica, do ponto de vista do desempenho, trouxe melhorias na água quente e deterioração na água fria. / Introduction: Uncertainties exist regarding the use of immersion to accelerate passive recovery after anaerobic exercise. Objective: To assess if immersion at different temperatures accelerates the recovery of baseline physiological variables after anaerobic exercise and improves subsequent physical performance. Methodology: Sixteen male trained cyclists and five male trained triathletes (average age, 26,9 ± 5,8 y, mean body mass 72,3 ± 7,9 kg and average height 175,7 ± 7,7 cm) were subjected, on three separate occasions, to two Wingate Anaerobic Tests (WAnT) using a bicycle ergometer to measure mean power output (MPO), peak power output (PPO), total work (TW) and fatigue index (FI). Each WAnT test was followed by 10 minutes passive recovery, either unimmersed or immersed at 20 ºC or 40 ºC (randomly selected). Blood was collected every two-minutes during recovery for lactate analysis. Oxygen consumption (VO2), carbon dioxide production (VCO2), expired volume (VE), respiratory exchange rate (RER) and heart rate (HR) were measured. During the last minute of recovery ten-minute mean (Mean10min) values were calculated, graphs being plotted to estimate time constants (TC) and the area under the curve (AUC) for each parameter. Data were analyzed using a mixed-model repeated-measurement ANOVA with type of recovery, test and time as factors. Results: Immersion at 40 ºC produced a 2.2% improvement in power output during the second WAnT test while at 20 ºC there was a 2.4% decrease in power output (p < 0.01). Compared to the unimmersed values, immersion significantly increased (p < 0.05) the Mean 10min (VO2 +16%, VCO2 +10%, VE +14%, HR +15%), AUC (VO2 +31%, VCO2 +21%, VE +20%, HR +22%) and TC VO2 (+18%) values but decreased the TC HR value (-37%). There was no apparent effect on serum lactate. Conclusion: Immersion during short recovery periods after anaerobic exercise delayed physiological recovery. Performance decreased after immersion at 20 °C but increased at 40 ºC.
|
4 |
Phenotypic variation and thermoregulation of the human handPayne, Stephanie January 2018 (has links)
The hand has the highest surface area-to-volume ratio of any body part. This property offers the potential for the hand to serve an important function in thermoregulation through radiative heat loss. Theoretically, the capacity for heat loss may be influenced by hand and digit proportions, but the extent to which these proportions influence the hand's radiative properties remains under-investigated. Although hand morphology is highly constrained by both integration and functional dexterity, phenotypic variation in hand and digit proportions across human populations shows broad ecogeographic patterns. These patterns have been associated with climate adaptation. However, the theory linking climate adaptation to such ecogeographic patterns is based on underlying assumptions relating to thermodynamic principles, which have not been tested in vivo. This study sought to determine the influence of hand and digit proportions on heat loss from the hands directly, the additional anthropometric factors that may affect this relationship, and the impact of variation in hand proportions on dexterity in the cold. The relationship between hand proportions and thermoregulation was tested through both laboratory-based investigation and a field study. The laboratory investigation assessed the relationship between hand proportions and heat loss, the influence of body size and composition on this relationship, and the effect of morphological variation on manual dexterity. Participants (N=114; 18-50 years of age), underwent a 3-minute ice-water hand-immersion. Thermal imaging analysis was used to quantify heat loss. Hand and digit proportions were quantified using 2D and 3D scanning techniques; body size and composition were measured using established anthropometric methods and bio-impedance analysis. After accounting for body size, hand width, digit-to-palm length ratio, and skeletal muscle mass were significant predictors of heat loss from the hand, whilsthand length and fat mass were not. A separate set of participants (N=40) performed a Purdue pegboard dexterity test before and after the immersion test, which demonstrated that digit width alone negatively correlated with dexterity. The field study tested whether phenotypic variation in upper limb proportions could be attributed to cold adaptation or selection for dexterity in living populations exposed to significant energetic stress. Upper limb segment lengths were obtained from participants (N=254; 18-59 years of age), from highland and lowland regions of the Nepalese Himalayas using established anthropometric methods, and relative hand proportions were assessed in relation to severe energetic stress associated with life at high altitude. Relative to height, hand length and hand width were not reduced with altitude stress, whilst ulna length was. This indicates that cold adaptation is not shaping hand proportions in this case, although phenotypic variation in other limb segments may be attributed to cold adaptation or a thrifty phenotype mechanism. The current study provides empirical evidence to support the link between surface area-to-volume ratio, thermodynamic principles and ecogeographical patterns in human hand morphology. However, this research also demonstrates the complexity of the hand's role in thermoregulation; not only do other factors such as muscularity affect heat loss from the hand, but hand morphology is also highly constrained by integration and dexterity.
|
5 |
Modalités d'exercice et de récupération : approche cardiovasculaire et performance / Exercises modalities and recovery strategies : cardiovascular aspects and performanceMénétrier, Arnaud 06 December 2013 (has links)
(Cf. corpus p. 25-26) Ce travail de thèse s'est articulé autour de deux problématiques : les réponses cardiovasculaires consécutives à l/ différents protocoles d'exercice et 2/ différents protocoles de récupération. Concernant la première, 3 protocoles de recherches ont été menés. L'un avait pour objectif de déterminer les effets aigus d'exercices de même durée proposant une quantité de travail totale équivalente distribuée de façon constante (CC) ou intermittente (IT), sur la rigidité artérielle multi-segmentaire et ses déterminants. Les deux autres se proposaient d'explorer les dysfonctions cardiaques induites par des exercices de durées plus longues (2 à 4 heures) et leurs mécanismes sous-jacents. La seconde problématique de ce travail de doctorat a conduit à la réalisation de 5 protocoles de recherche. L'immersion contrastée (alternance d'immersions d'une à deux minutes jusqu'à l'aine à ~ 12°C et à ~ 36°C), l'immersion en eau froide (~ 12°C) et la compression élastique ont été tout particulièrement étudiées. Les points suivants ont été abordés : la comparaison des effets de la compression élastique et de l'immersion contrastée sur la performance subséquente ; la connaissance des facteurs concourant aux bénéfices de ces dernières entre des efforts intenses et brefs (c.-à-d. étude du débit sanguin musculaire, de la saturation tissulaire en oxygène, de la clairance des métabolites, etc.) ; l'étude des effets de la pression hydrostatique seule (immersion à neutralité thermique ), et ceux de celle-ci associée au froid (immersion en eau froide ) ou à l'alternance de température (immersion contrastée) sur le débit sanguin musculaire; et enfin l'étude des effets sur certains paramètres de la récupération du port d'une compression élastique au cours et au décours d'un trail. Dans ce contexte, les résultats de nos études mettent en évidence qu'un exercice de type IT diminue davantage la rigidité artérielle multi-segmentaire qu'un exercice de type CC. Cette diminution plus prononcée est associée à un relargage plus important de substances vasodilatatrices (NO,ANP, lactates, etc.). Nous avons également montré qu'un exercice prolongé de durée modérée engendre des dysfonctions cardiaques transitoires. Plus particulièrement, certains indices de contractilité évalués par une technique échocardiographique de dernière génération (c.-à-d. le « Speckle Tracking Echocardiography ») nous ont permis de mettre en évidence que la baisse de la fonction systolique du ventricule gauche (VG) était associée à une atteinte contractile du myocarde dans des conditions standardisées de fréquence et de charge cardiaques. Nos résultats soulignent également le rôle clé de la torsion ventriculaire dans la diminution du remplissage du VG et par conséquent de la fonction diastolique à l'arrêt de l'effort. Les études expérimentales s'intéressant aux techniques de récupération post-exercice indiquent que l'immersion contrastée et la compression élastique par rapport à une récupération passive, lorsqu'elles sont appliquées immédiatement après un premier exercice fatiguant, améliorent la performance subséquente (exercice de pédalage de 5 min) lorsque celle-ci est répétée dans un laps de temps court (15 min). De plus, l'immersion contrastée est plus efficace que la compression élastique pour améliorer la performance subséquente. Ces techniques de récupération accélèrent la clairance du lactate, cette dernière étant accélérée davantage après l'immersion contractée. La compression élastique augmente le débit sanguin musculaire mais également la saturation tissulaire en oxygène, que ce soit avant et après l'effort. Par rapport à une récupération passive, l'immersion contrastée augmente également le débit sanguin musculaire après l'effort, et davantage que la compression élastique. (...) / (Cf. corpus p. 27-28) This thesis work focuses on the cardiovascular responses consecutive to l/ various exercice modalities and 2/ various post-exercise recovery interventions. With regard to the exercise modalities, 3 experimental protocols were led. The first one aimed to compare the acute effects of constant and interval exercises on regional arterial stiffness and these determinants. Two others studies focused on the cardiac dysfunctions induced by exercises of longer durations (2-3h) and the underlying mechanisms. The second problematic of this thesis work led to 5 studies. The following questions were approached: the comparison of the effects of contrast water therapy and compression stockings on the subsequent performance; the knowledge of the factors at the origin of the benefits of these recovery interventions between repeated brief and exhaustive bouts of physical exercise (i.e. muscle blood flow, muscle oxygenation, removal of metabolic waste, etc.) ; the changes in leg muscle blood flow, caused by hydrostatic pressure alone [thermoneutral water immersion), and in addition to cooling (cold water immersion) or alternating of temperature (contrast water therapy); and finally the effects of elastic compression worn during and after a trail running race on the participants' recovery. Our results show that interval exercise decreases more regional arterial stiffness [central and peripheral) than constant exercise. This more pronounced decrease is associated with a higher concentration of vasodilator factors (NO, ANP, lactates, etc.). We also show that a prolonged exercise (2-3h) induce transient cardiac dysfunctions. Specifically, parameters of systolic function evaluated using 2D-speckle tracking echocardiography not only at rest, but also during incremental tests to adjust heart rate demonstrate that the 3h-period of prolonged and strenuous exercise induces left ventricular systolic dysfunction. Our results also demonstrate that depressed diastolic function is associated with delayed untwisting velocity. The studies focusing on post-exercise recovery interventions indicate that compared with passive recovery, contrast water therapy and compression stockings improve the subsequent 5-min maximal performance in cycling when this one is repeated during a brief elapsed time (i.e. 15 min). Moreover, contrast water therapy is more efficient than compression stockings to improve the subsequent performance. Theses recovery interventions accelerate the removal of lactates, and contrast water therapy more than compression stockings. The elastic compression increases muscle blood flow but also tissue oxygen saturation, before and after a physical exercise. Contrast water therapy also increases muscle blood flow after an exercise compared with a passive recovery, and more than elastic compression. (...)
|
Page generated in 0.074 seconds