• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 56
  • 56
  • 16
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of the high affinity receptor for IgE (FcepsilonRI) in human neutrophils

Alphonse, Martin Prince 31 March 2006 (has links)
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mainly mediated by the Fc receptor family, including IgE receptors. Recently, we have shown that human PMNs from allergic asthmatic subjects express the high affinity receptor, FceRI. In this study, we have examined the regulation of FceRI by human PMNs in vitro and in vivo during the allergic pollen season. First we studied the pattern of expression of FceRI in PMNs during the pollen allergic and outside the pollen season. Peripheral blood neutrophils were isolated from adult atopic asthmatics (AA) (n=17), allergic non asthmatics (ANA) (n=15) and healthy donors (n=16) by dextran, ficoll gradient centrifugation and magnetic cell sorting (MACS). Surface, total protein and mRNA expression of FceRI were investigated in the three groups by FACS, immunocytochemistry (ICC) and fluorescent in situ hybridization (FISH) respectively. Secondly, we investigated the effect of Th-2 cytokines which are known to regulate IgE receptor expression. PMNs from atopic asthmatic subjects were stimulated in vitro with Th-2 cytokines (IL-4, IL-9, GM-CSF) and Th-1 cytokine IFN-gamma. Finally we determined whether the expression of FceRIbeta chain correlated with the surface expression of FceRIalpha chain in PMNs. Irrespective of the season, PMNs from atopic asthmatic subjects showed increased expression of FceRIalpha chain in surface, total protein and mRNA compared to atopic non asthmatics and healthy donors (n=20). Interestingly, FceRIalpha chain surface and mRNA expression increased significantly during pollen season compared to non pollen season (P=0.001) in PMNs isolated from AA (n=9) in contrast to healthy donors and ANA (n=8). Furthermore similar pattern of FceRI expression were observed in vitro when PMNs were stimulated with Th2 cytokines. IL-4, IL-9 and GM-CSF showed increased protein and mRNA expression of FceRIalpha chain at 6 and 18hrs (n=6) whereas IFN-gamma down regulated the mRNA expression of FceRIalpha chain at 6hrs. Also, irrespective of season AA (n=11) subjects showed increased expression of FceRI beta chain when compared to ANA (n=10) and healthy donors (n=9). Western blot analysis showed increased FceRI beta protein in atopic asthmatic subjects (n=4). Interestingly irrespective of the groups, there was a positive correlation r = 0.8054 between total protein expression of beta chain with surface expression of alpha chain of FceRI in neutrophils. Our data suggest that the expression of FceRI in neutrophils of atopic asthmatic patients is highly regulated. Our in vitro studies provide evidence that Th-2 cytokines such as IL-9, IL-4 and GM-CSF up-regulate the expression of FceRI. Furthermore we show evidence of increased expression of FceRIbeta chain in neutrophils of atopic asthmatic subjects. Collectively these results suggest that FceRI mediated neutrophil dependent activation may play a key role in allergic diseases.
12

Regulation of the high affinity receptor for IgE (FcepsilonRI) in human neutrophils

Alphonse, Martin Prince 31 March 2006 (has links)
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mainly mediated by the Fc receptor family, including IgE receptors. Recently, we have shown that human PMNs from allergic asthmatic subjects express the high affinity receptor, FceRI. In this study, we have examined the regulation of FceRI by human PMNs in vitro and in vivo during the allergic pollen season. First we studied the pattern of expression of FceRI in PMNs during the pollen allergic and outside the pollen season. Peripheral blood neutrophils were isolated from adult atopic asthmatics (AA) (n=17), allergic non asthmatics (ANA) (n=15) and healthy donors (n=16) by dextran, ficoll gradient centrifugation and magnetic cell sorting (MACS). Surface, total protein and mRNA expression of FceRI were investigated in the three groups by FACS, immunocytochemistry (ICC) and fluorescent in situ hybridization (FISH) respectively. Secondly, we investigated the effect of Th-2 cytokines which are known to regulate IgE receptor expression. PMNs from atopic asthmatic subjects were stimulated in vitro with Th-2 cytokines (IL-4, IL-9, GM-CSF) and Th-1 cytokine IFN-gamma. Finally we determined whether the expression of FceRIbeta chain correlated with the surface expression of FceRIalpha chain in PMNs. Irrespective of the season, PMNs from atopic asthmatic subjects showed increased expression of FceRIalpha chain in surface, total protein and mRNA compared to atopic non asthmatics and healthy donors (n=20). Interestingly, FceRIalpha chain surface and mRNA expression increased significantly during pollen season compared to non pollen season (P=0.001) in PMNs isolated from AA (n=9) in contrast to healthy donors and ANA (n=8). Furthermore similar pattern of FceRI expression were observed in vitro when PMNs were stimulated with Th2 cytokines. IL-4, IL-9 and GM-CSF showed increased protein and mRNA expression of FceRIalpha chain at 6 and 18hrs (n=6) whereas IFN-gamma down regulated the mRNA expression of FceRIalpha chain at 6hrs. Also, irrespective of season AA (n=11) subjects showed increased expression of FceRI beta chain when compared to ANA (n=10) and healthy donors (n=9). Western blot analysis showed increased FceRI beta protein in atopic asthmatic subjects (n=4). Interestingly irrespective of the groups, there was a positive correlation r = 0.8054 between total protein expression of beta chain with surface expression of alpha chain of FceRI in neutrophils. Our data suggest that the expression of FceRI in neutrophils of atopic asthmatic patients is highly regulated. Our in vitro studies provide evidence that Th-2 cytokines such as IL-9, IL-4 and GM-CSF up-regulate the expression of FceRI. Furthermore we show evidence of increased expression of FceRIbeta chain in neutrophils of atopic asthmatic subjects. Collectively these results suggest that FceRI mediated neutrophil dependent activation may play a key role in allergic diseases.
13

Regulation and function of the leukocyte immunoglobulin-like receptors (LILRS) in rheumatoid arthritis

Huynh, Owen Anthony, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
The Leukocyte Immunoglobulin-like Receptors (LILRs) are a family of receptors that is broadly expressed on all leukocytes and have the ability to regulate their function. A substantial amount of evidence suggests that LILRs may be involved in immune homeostasis but also immune dysregulation. We therefore studied the role of LILRs in relation to the autoimmune disease, rheumatoid arthritis (RA). RA is a chronic and systemic inflammatory disease involving inflammation of the joints affecting the synovial membrane, cartilage and bone. Much of the tissue damage is a result of an inappropriate immune response within the joint space caused by the unwarranted activation of leukocytes. Here were report that LILRA2 (an activating receptor) that has been previously shown to be highly expressed in the rheumatoid synovium, induces the production of pro-inflammatory cytokines TNF-α, IL-1, IL-6, IFN-γ and IL-10 in primary monocytes. These cytokines are known to have an important role in the pathogenesis of RA indicating a pathway by which LILRA2 exacerbates RA. Co-ligation of LILRB4 (an inhibitory receptor) with LILRA2 abolishes cytokine production suggesting that LILRB4 is able to suppress the function of LILRA2. Expression of both LILRA2 and LILRB4 are regulated by inflammatory cytokines and LPS, indicative of a feedback mechanism. There is also cross-talk between LILRs and TLR4 as co-stimulation with LPS and either LILRA2 or LILRB4 inhibits cytokine production. A differential expression of LILRs has also been identified on lymphocytes of patients with RA whereby an increase of LILRA1 (activating) and LILRB1 (inhibitory) expressing circulating lymphocytes is present in RA patients when compared to healthy control subjects. From these studies, we propose that LILRs have a functional role in RA by regulating local and systemic inflammation. The presence of LILRA2 in the RA joint is detrimental since its potent ability to induce inflammatory cytokines, particularly TNF-α, can initiate leukocyte recruitment and activation of proteases. Along with TLR4, LILRA2 and LILRB4 have the potential to moderate the innate immune system via regulation of cytokine production. Furthermore, suppression of LILRA2 function may serve as a therapeutic tool in many inflammatory diseases.
14

Tim-3 Regulates Pro- and Anti-Inflammatory Cytokine Expression in Human CD14 <sup>+</sup> Monocytes

Zhang, Ying, Ma, Cheng J., Wang, Jia M., Ji, Xiao J., Wu, Xiao Y., Moorman, Jonathan P., Yao, Zhi Q. 01 February 2012 (has links)
Tim-3 and PD-1 are powerful immunoinhibitory molecules involved in immune tolerance, autoimmune responses, and antitumor or antiviral immune evasion. A current model for Tim-3 regulation during immune responses suggests a divergent function, such that Tim-3 acts synergistically with TLR signaling pathways in innate immune cells to promote inflammation, yet the same molecule terminates Th1 immunity in adaptive immune cells. To better understand how Tim-3 might be functioning in innate immune responses, we examined the kinetics of Tim-3 expression in human CD14 + M/M 4 in relation to expression of IL-12, a key cytokine in the transition of innate to adaptive immunity. Here, we show that Tim-3 is constitutively expressed on unstimulated peripheral blood CD14 + monocytes but decreases rapidly upon TLR stimulation. Conversely, IL-12 expression is low in these cells but increases rapidly in CD14 + M/M.J, in correlation with the decrease in Tim-3. Blocking Tim-3 signaling or silencing Tim-3 expression led to a significant increase in TLR-mediated IL-12 production, as well as a decrease in activation-induced up-regula-tion of the immunoinhibitor, PD-1; TNF-a production was not altered significantly, but IL-10 production was increased. These results suggest that Tim-3 has a role as a regulator of pro- and anti-inflammatory innate immune responses.
15

Tpl2-dependent signaling regulates dendritic cell maturation and immune function

Groft, Sarah Grace 25 January 2022 (has links)
No description available.
16

Effects of probiotic on responses to stress: systemic modulation of microbiota-gut-brain axis

Liu, Yunpeng January 2021 (has links)
Bacteria, especially symbiotic species in the gastrointestinal tract, have lived with human for long time and are involved in many aspects of host physiology. There is growing evidence that microbiota-gut-brain axis plays an important role in modulating the response to stress in both human and animals. Alterations in the gut microbiota can change the central nervous system function through effects on the endocrine, immune and nervous systems. Recent studies suggest that probiotic treatment may help to maintain resistance against the detrimental effects of stress though the microbiota-gut-brain axis. However, how potentially beneficial bacteria interact with specific immune and neural components, to mediate beneficial effects on behavior remain unclear. Using chronic social defeat stress, a model often used in post-traumatic stress disorder research, we found that administration of Lactobacillus rhamnosus JB-1 beginning 48 hours following chronic social defeat led to persistence of fear memory and social deficits. These effects were associated with changes in gene expression related to emotion and memory in the hippocampus. This was in contrast to previous studies showing that probiotic intervention during social defeat prevents stress induced deficits in social behavior. This indicates that timing of L. rhamnosus treatment in relation to stress exposure has important implications for effects of the bacteria on behavior. In relation to the mechanism of action of L. rhamnosus on behavior, we demonstrate through depletion and adoptive transfer experiments that CD4+CD25+ T cells in mice treated with JB-1 were necessary and sufficient for JB-1 induced anxiolytic and antidepressant-like effects. Evidence also suggested that Ly6Chi monocytes may be a downstream target inhibited by Tregs involved in the behavioral effects of the bacteria. We observed that JB-1 could also reduce the number of activated microglia in the hippocampus, and attenuate hypothalamic-pituitary-adrenal axis reactivity with the integrity of vagus nerve. Crucially we demonstrated that JB-1 induced promotion of peripheral Tregs, reduction in microglia activation in the hippocampus, and attenuation of HPA axis reactivity, were all inhibited following vagotomy indicating that vagus nerve integrity is required to maintain immune and endocrine linkages from gut microbes to the brain. These studies demonstrate prerequisites for beneficial probiotic effects on stress related behaviours including a specific time window in relation to stress exposure, the activation of regulatory immune cells, and undisrupted vagal nerve signalling. These findings highlight the inter-systemic communication of the microbiota-gut-brain axis in the stress response, and might help to unveil more therapeutic opportunities in relation to stress-related mood disorders. / Thesis / Doctor of Philosophy (PhD) / Excessive exposure or dysregulated responses to stress in human and animals induces behavioral changes and the development of mood disorders. The Microbiota-gut-brain axis plays an important role in maintenance of homeostasis. However, crosstalk between the different components of microbiota-gut-brain axis, and how specific microbes can modulate these interactions, remains unclear. Thus, we sought to understand the mechanism of inter-systemic communication linking a specific gut microbe to changes in stress response and behavior. We observed immunoregulation by regulatory T cells were essential in Lactobacillus rhamnosus JB-1 induced anxiolytic and antidepressant-like effects. We also found the integrity of vagus nerve was necessary for JB-1 induced promotion of regulatory T cells and decrease in microglial activation and attenuation of hypothalamic-pituitary-adrenal axis that are associated with the anxiolytic effects of the bacteria. We also identified that the temporal relationship between exposures to stress and the bacteria is important as ingestion of JB-1 directly after chronic social defeat lead to persistence of fear memory and social deficits. This work will help us to understand mechanisms underlying the microbiota-gut-brain axis, which may allow for the development of novel microbe based therapeutic intervention against mood disorders.
17

IgG-mediated Immune Suppression: the Effect on the Host Immune System

Brinc, Davor 30 July 2008 (has links)
One of the most effective immunological interventions for human disease prevention is the administration of anti-red blood cell (RBC) IgG, more specifically, anti-D IgG, for prevention of hemolytic disease of the fetus and newborn (HDN), a serious and potentially fatal condition caused by the maternal immune response against the Rhesus (Rh) blood group system D antigen on fetal RBC. Despite its widespread clinical use, the mechanism of the suppressive anti-RBC IgG effect is not fully understood. In a murine model of immunity to foreign RBCs, transfusion of mice with IgG-opsonized RBCs strongly attenuated the antibody response compared to transfusion of untreated RBCs. This model was used to study the anti-RBC IgG effect on the host immune response. Contrary to the predominant theories of the anti-D effect, here it is shown that IgG-mediated RBC clearance is not sufficient for the attenuation of antibody responses. IgG-opsonized RBCs internalized by the mononuclear phagocytic cells could stimulate T and B cell responses against RBC antigens. This thesis also shows that the adaptive tolerance at the T or B cell level is not the reason for the attenuation of the antibody response. Instead, IgG selectively prevented the appearance of antigen-primed RBC-specific B cells and, surprisingly, induced the host B cell response against the IgG in complex with RBCs. These results suggest that the inability of RBC-specific B cells to recognize and present RBC-specific epitopes may explain the inhibitory IgG effect.
18

The many faces of Interleukin-4 in homeostasis and disease

Diana M Cortes Selva (6634511) 14 May 2019 (has links)
Intensive study of interleukin-4 for more than three decades has revealed multiple functions of this cytokine in diverse processes. Nevertheless, the wide distribution of Interleukin-4 suggests the possibility of unexplored roles. Indeed, in here we present a novel role of IL-4 for the maintenance of different populations of stromal cells in peripheral lymph nodes at homeostasis and describe a role of IL-4 in the expansion of these stromal populations following antigen challenge. In consequence, IL-4 is fundamental for mounting an appropriate humoral response to a primary immunization, and absence of this cytokine is detrimental for the development of a Type 2 response. Furthermore, we describe the role of IL-4 in the immune responses of offspring antenatally exposed to <i>Schistosoma mansoni</i>antigens. Diminished IL-4 production is linked to reduced cellular T and B cells responses in offspring derived from infected mothers, which is of critical relevance to understand vaccination failure. Finally, we describe the protective role of Schistosomiasis infection in atherosclerosis and propose possible mechanism that helps explain the athero-protection. This will contribute to the discovery of novel pathways inducing protection from cardiovascular disease and help to identify possible targets for novel treatments
19

Immunomodulatory proteins in Heligmosomoides polygyrus excretory/secretory products

Kemter, Andrea Maria January 2016 (has links)
Infections with parasitic helminths are counted as neglected tropical diseases; they infect millions of people worldwide, causing high morbidity and economic loss. Many parasites establish long lasting infections in the host by blocking immune recognition, activation and effector pathways. To allow in depth research on their modes of immune evasion, several mouse models for parasitic helminth infections have been established. Heligmosomoides polygyrus for example is a gastrointestinal nematode of rodents exhibiting a wide spectrum of immunomodulatory effects, mediated in part by soluble molecules released by adult worms in vitro, the excretory/secretory products (HES). HES is a potent inhibitor of dendritic cell (DC) activation by Toll-like receptor (TLR) ligands, completely abolishing LPS induced IL-12 production and reducing the upregulation of cell surface activation markers. As of now, neither the modulatory molecule nor its mechanism of action are known. Here, the effect of HES on TLR ligand induced DC maturation was characterized in considerably more detail compared to previous publications. It could be shown to inhibit DC maturation induced by various TLR ligands, on both protein and mRNA levels. These effects were comparable in both C57BL/6 and BALB/c derived cells; in contrast to this HES differentially affected alternative activation of BMDC from these two mouse strains. Although for most of the experiments GM-CSF differentiated BMDC were used, HES also inhibited LPS induced activation of splenic CD11c+ cells as well as the activation of all three populations described in Flt3-L differentiated BMDC - pDCs, CD11b+ cDCs and CD24+ cDCs. Furthermore, it could be shown here that HES also inhibits LPS induced maturation in human monocyte derived DCs. In the search for the component in HES responsible for its inhibition of TLR ligand induced DC maturation, exosome depleted HES rather than exosomes was inhibitory, and the effect was heat labile. This lead to the conclusion that the modulatory molecule has a protein component which is indispensable for its effect; following this reasoning HES was subjected to fractionation, with subsequent analysis of the fraction protein contents by mass spectrometry. The top nine candidate proteins were expressed recombinantly; however, the recombinants were not able to inhibit LPS induced DC activation. In parallel, experiments to elucidate the mechanism by which HES inhibits TLR ligand induced DC maturation were performed. This led to the conclusion that HES induces changes in the cells that, while not affecting the induction of signalling downstream of TLRs, do impair its maintenance. As a complement to these experiments, the transcriptomes of LPS and LPS+HES treated cells eight hours after LPS stimulation were compared. This revealed that transcripts encoding a number of transcription factors inducing the expression of activation markers after TLR ligation were reduced upon treatment of cells with HES, as were the transcript levels of IRAK2, a kinase necessary for persistent signalling. In addition, HES increased the transcript levels for several factors known to negatively regulate DC maturation, including ATF3. Furthermore, this analysis revealed changes in transcript levels of factors like HIF-1a, indicating an even greater reliance on aerobic glycolysis if cells were treated with HES, in addition to hints at increased ER and oxidative stress. In conclusion, this work narrows down the list of potential DC modulators in HES, gives a first insight into changes in DC metabolism induced by HES and sheds light on the role of a number of signalling pathways with important roles in DC activation as targets of DC inhibition by HES.
20

CD40-Induced TRAF degradation in immune regulation

Graham, John 01 December 2010 (has links)
CD40 is a TNF receptor superfamily (TNFRSF) member central to the development of many aspects of the adaptive immune response. CD40 signaling promotes adaptive immunity in part by inducing the expression of cytokines, chemokines, and various adhesion and co-stimulatory molecules. The family of cytoplasmic adapter proteins, the TNFR-associated factors (TRAFs), serve as major mediators of TNFRSF pathways. CD40 regulates itself in part via the signaling induced degradation of TRAF2 and TRAF3. However, the effect of CD40-induced TRAF degradation on other TRAF dependent pathways is unknown. Here I provide evidence that CD40-mediated degradation of TRAFs 2 and 3 also influences the responsiveness of immune cells to CD40-independent, TRAF2- and 3-dependent pathways. LMP1 is a functional mimic of CD40, but signals to B lymphocytes in an amplified and sustained manner. LMP1 contributes to the development of B cell lymphoma in immunosuppressed patients, and may exacerbate flares of certain autoimmune diseases. The cytoplasmic (CY) domain of LMP1 binds TRAF2 with lower avidity than the CY domain of CD40, and TRAF2 is needed for CD40-mediated degradation of TRAFs 2 and 3. LMP1 doesn't induce TRAF degradation, and employs TRAF3 as a positive mediator of cell signaling, whereas CD40 signals are inhibited by TRAF3. Here, I tested the hypothesis that relative affinity for TRAF2, and/or distinct sequence differences in the TRAF2/3 binding sites of CD40 vs. LMP1, controls the disparate ways in which CD40 and LMP1 use TRAFs 2 and 3. The results revealed that TRAF binding affinity and TRAF binding site sequence dictate a distinct subset of CD40 vs. LMP1 signaling properties. The E3 ubiquitin ligases, cIAP1 and cIAP2, have been reported to play a crucial role in CD40 signaling. Because LMP1 is a mimic of CD40 signals, I hypothesized that LMP1 requires the cIAPs for signaling. To elucidate the role of the cIAPs in CD40 and LMP1 signaling, I specifically depleted the cIAPs and found that the cIAPs are differentially utilized in CD40 and LMP1 signaling. I also sought to further the understanding of the molecular underpinnings of how CD40, but not LMP1 signaling induces TRAF2 and TRAF3 degradation upon signaling. To do this, I investigated the ability of various CD40 and LMP1 mutants to induce TRAF degradation in distinct TRAF or cIAP deficient models. I found that neither a high TRAF2 binding potential nor the presence of the cIAP molecules are required for this process. Thus, this work reveals important insights into the molecular mechanisms of and role of CD40-mediated TRAF degradation in the immune system.

Page generated in 0.1225 seconds