• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anti-GPIbα Mediated Platelet Desialylation and Activation: A Novel Fc-independent Platelet Clearance Mechanism and Potential Therapeutic and Diagnostic Target in ITP

Li, June 26 June 2014 (has links)
Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests antibody-mediated platelet destruction occurs in the spleen via Fcγ receptors (FcγR). However, it has been demonstrated that anti-GPIbα-mediated ITP is often refractory to therapies targeting FcγR pathways. Utilizing a panel of murine monoclonal antibodies (mAbs) against murine and human GPIIbIIIa and GPIbα, it was found that anti-GPIbα induces not only platelet activation to a much greater extent than anti-GPIIbIIIa antibodies, but also significant surface expression of neuraminidase 1 and platelet desialylation. Utilizing inhibitors of platelet activation and desialylation, it was found that these two processes are not mutually exclusive, but rather exist in a positive feedback loop, leading to FcγR-independent platelet clearance in the liver likely via Ashwell-Morell receptors. Furthermore, in a murine model of ITP, sialidase inhibitor treatment rescued platelet counts in predominantly anti-GPIbα -mediated thrombocytopenia.
2

Anti-GPIbα Mediated Platelet Desialylation and Activation: A Novel Fc-independent Platelet Clearance Mechanism and Potential Therapeutic and Diagnostic Target in ITP

Li, June 26 June 2014 (has links)
Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests antibody-mediated platelet destruction occurs in the spleen via Fcγ receptors (FcγR). However, it has been demonstrated that anti-GPIbα-mediated ITP is often refractory to therapies targeting FcγR pathways. Utilizing a panel of murine monoclonal antibodies (mAbs) against murine and human GPIIbIIIa and GPIbα, it was found that anti-GPIbα induces not only platelet activation to a much greater extent than anti-GPIIbIIIa antibodies, but also significant surface expression of neuraminidase 1 and platelet desialylation. Utilizing inhibitors of platelet activation and desialylation, it was found that these two processes are not mutually exclusive, but rather exist in a positive feedback loop, leading to FcγR-independent platelet clearance in the liver likely via Ashwell-Morell receptors. Furthermore, in a murine model of ITP, sialidase inhibitor treatment rescued platelet counts in predominantly anti-GPIbα -mediated thrombocytopenia.

Page generated in 0.0529 seconds