• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 26
  • 26
  • 16
  • 15
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The host immune response to Streptococcus pneumoniae : bridging innate and adaptive immunity /

Lee, Katherine Shi-Hui January 2006 (has links) (PDF)
Thesis (Ph.D.)--Uniformed Services University of the Health Sciences, 2006 / Typescript (photocopy)
12

T Lymphocyte Apoptosis and Memory in Viral Infection: A Dissertation

Razvi, Enal Shahid 01 November 1994 (has links)
Acute viral infections in humans and mice induce T lymphocyte responses which mediate viral clearance and result in the establishment of immunological memory. The course of an immune response to acute viral infection is associated with an immune deficiency in the lymphocyte compartment. This is usually characterized by the inability of lymphocytes to productively respond to mitogen or recall antigen. This thesis examined the acute lymphocytic choriomeningitis virus (LCMV) infection of the mouse and showed that T lymphocytes isolated from acutely LCMV-infected mice underwent activation-induced apoptosis upon signalling through the T-cell receptor (TcR)-CD3 complex. Kinetic studies demonstrated that this sensitivity to apoptosis directly correlated with the induction of immune deficiency, as measured by impaired proliferation in response to anti-CD3 antibody or to concanavalin A. Cell cycling in interleukin-2 (IL-2) alone stimulated proliferation of LCMV-induced T cells without inducing apoptosis, but preculturing of T cells from acutely-infected mice in IL-2 accelerated apoptosis upon subsequent TcR-CD3 crosslinking. T lymphocytes isolated from mice after the acute infection were less responsive to IL-2, but IL-2 receptor-bearing T cells, presumably memory T cells, responding to IL-2 were primed in each case to die a rapid apoptotic death upon TcR-CD3 crosslinking. These results indicated that virus infection-induced unresponsiveness to T-cell mitogens is in part attributable to apoptosis of the activated lymphocytes and suggest that the sensitization of memory cells by IL-2 and other stimulatory cytokines induced during an acute infection will cause them to die upon antigen recognition, thereby impairing specific responses to nonviral (recall) antigens. The cytotoxic T lymphocyte (CTL) response to acute LCMV infection is characterized by a massive (10-20 fold) expansion of CD8+ cell number, which after clearance of virus declines in number and returns to levels present prior to infection. This thesis documents the presence of high levels of apoptotic lymphocytes in situ in the spleens of mice during the silencing of the immune response to acute LCMV infection. Apoptotic cells were detected by an in situ nucleotidyl transferase (ISNT) assay. Both T and B lymphocytes, as revealed by immunohistochemical analysis, are shown to be dying in vivo, the latter in clusters. A biphasic occurrence of apoptosis during the course of the acute infection was found, with an increase in numbers of apoptotic cells above background at day 3 post-infection, and at day 11 post-infection, a second more pronounced peak coincident with the decline of the CTL response to the infection and with the decrease in total spleen leukocyte number. Apoptosis in vivo was detected in lpr mice lacking Fas expression, a molecule involved in lymphocyte apoptosis. Fas expression thus may not be required for lymphocyte apoptosis in the context of an acute viral infection. Apoptosis in situ and the silencing of the CD8+ T lymphocyte response to acute LCMV infection were unaffected by the enforced lymphocyte-directed expression of Bcl-2, a protein blocking IL-2 deprivation-induced apoptosis of lymphocytes. Experiments aimed at addressing the role of Bcl-2-sensitive apoptotic pathways in the development of viral persistence revealed that high-dose infection of Bcl-2-transgenic mice results in death of the animals. Flow cytometric analysis showed an accumulation of Thy1.2+ T cells in the lungs of these animals, and the air spaces in the lungs were occluded with cellular and fluid infiltrates. These results suggest that the pathology seen in the Bcl-2-transgenic mice upon high-dose infection is perhaps immune response-mediated (an immunopathology). This is consistent with a role for Bcl-2-sensitive pathways of lymphocyte apoptosis in the pathogenesis of persistent LCMV infection. The in situ demonstration of apoptosis in spleens during infection provide direct in vivo evidence for the death of lymphocytes during the recovery from an acute viral infection. This indicates that apoptotic elimination of the population en masse is a mechanism for halting an antiviral immune response upon clearance of virus. Furthermore, the data argue that IL-2 deprivation-driven apoptosis, upon clearance of virus, of the expanded T lymphocyte compartment is not the major mechanism involved in the silencing of the T cell response to acute LCMV infection. Resolution of an acute immune response leads into the generation of longterm immunological memory. Since this thesis focussed on T cell responses in viral infection, it was important to characterize the in vivo state of memory CD8+ T cells. During acute LCMV infection, the majority of the LCMV-specific CTL activity tested immediately ex vivo was mediated by CD8+ L-selectin-Mac-1+ CTL. The L-selectin- population of CD8+ cells elicited during acute infection also carried >99% of the restimulatable CD8+ CTLp to LCMV, and these required added IL-2 for development into effectors in vitro. In contrast to the acute infection, most of the virus-specific CTLp in immune mice were L-selectin+. Examination of CD8+ T cells in LCMV-immune mice revealed that a L-selectin+ blast-sized population of cycling CD8+ cells contained CTLp which developed into effector CTL in the absence of added IL-2. These cells also expressed Mac-1 and IL-2R. Flow cytometric sorting for IL-2R+ and IL-2R-CD8+ cells in the immune animal revealed, by limiting dilution analysis, similar frequencies of CTLp in both populations. In bulk restimulation assays, the CD25+ CTLp did not require added IL-2 for their in vitro development into effectors, whereas the CD25- CTLp did. Hence, the different requirements for CTLp to effector development in vitro reflect qualitative differences in the in vivo state of the CTLp in the various subpopulations. LCMV-specific memory CTLp not requiring added IL-2 for differentiation were also found in the small-sized, non-cycling, CD8+L-selectin- cells. In contrast, the small-sized, non-cycling, CD8+L-selectin+, and CD8+IL-2R- populations also carried CTLp, but these required added IL-2 for development into effector CTL. Hence, T cell memory to LCMV is distributed among various lymphocyte subpopulations in immune animals, and the presence of an activated cycling cell component may account for the stability and long-term perpetuation of antiviral immunological memory. In summary, the susceptibility of activated T lymphocytes to apoptosis probably explains an aspect of virus-induced immune deficiency and allows for the establishment of homeostasis subsequent to the resolution of an acute viral infection.
13

T cell homeostasis : a role for specific peptide/MHC ligands in homeostasis driven proliferation of naive CD8⁺ T cells /

Goldrath, Ananda W. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 89-102).
14

Characterization and function of the inflammatory response to infection by a gastrointestinal nematode parasite : new insights into protective Th2 responses /

Anthony, Robert McCullough January 2006 (has links) (PDF)
Thesis (Ph.D.)--Uniformed Services University of the Health Sciences, 2006 / Typescript (photocopy)
15

Tissue-dependent T Cell Apoptosis and Transcriptional Regulation of Memory CD8+T Cell Differentiation During Viral Infections: A Dissertation

Kapoor, Varun N. 10 December 2013 (has links)
Activation and proliferation of antigen-specific T cells is the hallmark of an anti-viral immune response. Effector T cells generated during an immune response are heterogeneous in regards to their ability to populate the memory pool once the immune response has resolved. Initial T cell activation takes place in the lymphoid organs, after which T cells migrate into the non-lymphoid tissues. The presence of memory T cells at non-lymphoid tissue sites has been shown to be critical for protection against secondary virus challenge. Our lab has previously demonstrated that during and after the resolution of the immune response to Lymphocytic choriomeningitis virus (LCMV) CD8+T cells in the nonlymphoid tissues are more resistant to apoptosis than those in the lymphoid organs. This stability of T cells in the non-lymphoid tissues may be critical in ensuring protection against a secondary virus challenge. Mechanisms regulating tissue-dependent differences in CD8+T cell apoptosis were studied in an acute LCMV infection model. Virus-specific CD8+T cells from lymphoid (spleen, mesenteric lymph nodes (MLN), inguinal lymph nodes (ILN)) and non-lymphoid tissues (peritoneal exudate cells (PEC), fat-pads) were compared for expression of surface antigenic markers known to correlate with a memory phenotype. Non-lymphoid tissues were enriched in IL-7Rhi, KLRG-1lo, CD27hi and CXCR3hi virus-specific CD8+ T cells, and the presence of these antigenic markers correlated with increased memory potential and survival. Transcription factors in addition to cell surface antigens were assessed as correlates of resistance to apoptosis. Virus-specific CD8+T cells in the nonlymphoid tissues were enriched in cells expressing T cell factor-1 (TCF-1), which correlated with increased memory potential and survival. CD8+T cells in the peritoneum of TCF-1-deficient mice had decreased survival during resolution of the immune response to LCMV, suggesting a role for TCF-1 in promoting survival in the non-lymphoid tissues. As an additional mechanism, I investigated whether apoptosis-resistant CD8+T cells migrate to non-lymphoid tissues and contribute to tissue-dependent apoptotic differences. CXCR3+ CD8+T cells resisted apoptosis and accumulated in the lymph nodes of mice treated with FTY720, which blocks the export of lymph node cells into the peripheral tissues. The PECs expressed increased amounts of CXCR3 ligands, CXCL9 and CXCL10, which may have recruited the non-apoptotic cells from the lymph nodes. By adoptively transferring splenic T cells into the spleen or PEC environment I showed that the peritoneal environment through a yet undefined factor promoted survival of CD8+T cells. In this study I have elucidated the mechanisms by which CD8+T cells preferentially survive in the non-lymphoid tissues. I found that non-lymphoid tissues were enriched in memory-phenotype CD8+T cells which were intrinsically resistant to apoptosis irrespective of the tissue environment. Furthermore, apoptosisresistant CD8+T cells may preferentially migrate into the non-lymphoid tissues where the availability of tissue-specific factors may enhance memory cell survival. Few transcription factors have been identified that regulate CD8+T cell effector-memory differentiation during an immune response. In this thesis, I have also studied the mechanism by which the transcription factor Blimp-1 regulates the generation of effector and memory CD8+T cells. Blimp-1 is known to repress a large number of target genes, and ChIP (chromatin immunoprecipitation) sequencing analysis done by Dr. HyunMu Shin in the lab of Dr. Leslie J. Berg identified CD25 (IL-2Rα) and CD27 as potential targets of Blimp-1. I found that Blimp-1-deficient CD8+T cells had sustained expression of CD25 (IL-2Rα) and CD27 during peak and resolution of the immune response to LCMV. By performing adoptive transfers of CD25hi and CD27hi CD8+T cells I showed that CD25 and CD27 expression on CD8+T cells during resolution of the immune response correlates with enhanced survival. Silencing Il2rα and Cd27 expression reduced the Blimp-1-deficient CD8+T cell response, suggesting that sustained expression of CD25 and CD27 was in part responsible for the enhanced CD8+T cell response seen in the Blimp-1-deficient mice. Furthermore, our collaborator Dr. HyunMu Shin showed that CD25 and CD27 are direct targets of Blimp-1, and that Blimp-1 recruits histone modifying enzymes to Il2rα and Cd27 loci to suppress their expression during the peak of the anti-viral immune response. This study identifies one of the mechanisms by which Blimp-1 regulates the balance between generation of effector and memory CD8+T cells. In this thesis work I also studied the function of the transcription factor ROG (Repressor of GATA-3) in regulating in vivo T cell responses during both acute and chronic LCMV infection. ROG-deficient mice had increased CD8+T cell responses during an acute LCMV infection. ROG deficiency also led to the generation of memory T cells with an enhanced recall response compared to WT controls. By using LCMV-specific P14+ TCR transgenic ROG-deficient CD8+T cells these defects were shown to be T cell intrinsic. ROG-deficient mice had enhanced CD8+T cell responses and viral clearance during a persistent high dose LCMV Clone 13 infection. During chronic LCMV infection ROG-deficient mice also had increased lung pathology and mortality. The results indicate that ROG negatively regulates T cell responses and memory generation during both acute and chronic LCMV infection. The studies highlighted in this thesis elucidate the mechanisms promoting CD8+T cell survival in non-lymphoid tissues as well as transcription factormediated regulation of memory CD8+T cell differentiation. Knowledge of this will help us better understand T cell immunity after infections and may eventually help develop better vaccines.
16

Immune activation during HIV-1 infection : implication for B cell dysfunctions and therapy monitoring /

De Milito, Angelo, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 6 uppsatser.
17

Cross-Reactive Memory CD4<sup>+</sup> and CD8<sup>+</sup> T Cells Alter the Immune Response to Heterologous Secondary Dengue Virus Infections in Mice: A Dissertation

Beaumier, Coreen Michele 08 February 2008 (has links)
Dengue virus (DENV) infects 50-100 million people worldwide every year and is the causative agent of dengue fever (DF) and the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four genetically and immunologically distinct DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Evidence suggests that an increased risk for DHF/DSS during secondary infection with a heterologous DENV serotype is due to an immunopathological response mediated by serotype-cross-reactive memory T cells from the primary infection. Furthermore, epidemiological studies have shown that the sequence of infection with different DENV serotypes affects disease severity. Though much has been learned from human studies, there exist uncontrollable variables that are intrinsic in this system such as genetic factors and unknown infection histories. These factors can skew experimental results, making interpretations difficult. Therefore, a murine model to study the immunologic aspects of sequential dengue infections would be an asset to the field of dengue research. To examine the effect of sequential infection with different DENV serotypes on the CD8+ T cell response, we immunized Balb/c mice with a primary DENV infection on day 0 and subsequently challenged with a heterologous secondary DENV infection on day 28. We tested all possible sequences of infection with the four serotypes. We analyzed the T cell response to two previously defined epitopes on the DENV E (Ld-restricted) and NS3 (Kd-restricted) proteins. Using ELISPOT and intracellular cytokine staining, we measured the frequency of T cells secreting IFNγ and TNFα in response to stimulation with these epitopes during three phases: acute primary, acute secondary, and the memory phase after primary infection. We found that the T cell response in heterologous secondary infections was higher in magnitude than the response in acute primary infection or during the memory phase. We also found that the hierarchy of epitope specific responses, as measured by IFNγ secretion, was influenced by the sequence of infections. The adoptive transfer of immune serum or immune splenocytes suggested that memory T cells from the primary infection responded to antigens from the secondary infection. In vitroexperiments with T cell lines generated from mice with primary and secondary DENV infections suggested the preferential expansion of crossreactive memory T cells. In testing all of the different possible sequences of infection, we observed that two different sequences of infection (e.g., DENV-2 followed by DENV-1 versus DENV-2 followed by DENV-3) resulted in differential CD8+ T cell responses to the NS3 peptide even though both secondary infection serotypes contain the identical peptide sequence. To investigate this phenomenon, we examined the role of CD4+ T cell help on the memory CD8+ T cell response. We found that CD4+ T cell cytokine responses differ depending on the sequence of infection. In addition, it was also shown that crossreactivities of the CD4+ T cell response are also sequence-dependent. Moreover, denguespecific memory CD4+ T cells can augment the secondary CD8+ T cell response. Taken together, we demonstrated that this serotype sequence-dependent phenomenon is the result of differential help provided by cross-reactive memory CD4+T cells. The findings in this novel mouse model support the hypothesis that both CD4+ and CD8+ serotype-cross-reactive memory T cells from a primary dengue virus infection alter the immune response during a heterologous secondary dengue virus infection. These data further elucidate potential mechanisms whereby the specific sequence of infection with different dengue virus serotypes influences disease outcomes in humans.
18

Activation and Role of Memory CD8 T Cells in Heterologous Antiviral Immunity and Immunopathology in the Lung: A Dissertation

Chen, Hong 09 December 2002 (has links)
Each individual experiences many sequential infections throughout the lifetime. An increasing body of work indicates that prior exposure to unrelated pathogens can greatly alter the disease course during a later infection. This can be a consequence of a phenomenon known as heterologous immunity. Most viruses invade the host through the mucosa of a variety of organs and tissues. Using the intranasal mucosal route of infection, the thesis focused on studying modulation of lymphocytic choriomeningitis virus (LCMV)-specific memory CD8 T cells upon respiratory vaccinia virus (VV) infection and the role of these memory CD8 T cells in heterologous immunity against VV and altered immunopathology in the lung. The VV infection had a profound impact on memory T cells specific for LCMV. The impact included the up-regulation of CD69 expression on LCMV-specific CD8 memory T cells and the activation of their in vivoIFN-γ production and cytotoxic function. Some of these antigen-specific memory T cells selectively expanded in number, resulting in modulation of the original LCMV-specific T cell repertoire. In addition, there was a selective organ-dependent redistribution of these LCMV-specific memory T cell populations in secondary lymphoid tissue (the mediastinal lymph node and spleen) and the non-lymphoid peripheral (the lung) organs. The presence of these LCMV-specific memory T cells correlated with IFN-γ-dependent enhanced VV clearance, decreased mortality and marked changes in lung immunopathology. Thus, the participation of pre-existing memory T cells specific for unrelated agents can alter the dynamics of mucosal immunity. This is associated with an altered disease course in response to a pathogen. The roles for T cell cross-reactivity and cytokines in the modulation of memory CD8 T cells during heterologous memory CD8 T cell-mediated immunity and immunopathology were investigated. Upon VV challenge, there were preferential expansions of several LCMV-specific memory CD8 T cell populations. This selectivity suggested that cross-reactive responses played a role in this expansion. Moreover, a VV peptide, partially homologous to LCMV NP 205, stimulated LCMV-NP205 specific CD8 T cells, suggesting that NP205 may be a cross-reactive epitope. Poly I:C treatment of LCMV-immune mice resulted in a transient increase but no repertoire alteration of LCMV-epitope-specific CD8 T cells. These T cells did not produce IFN-γ in vivo. These results imply that poly I:C, presumably through its induced cytokines, was assisting in initial recruitment of LCMV-specific memory CD8 T cells in a nonspecific manner. VV challenge of LCMV-immune IL-12KO mice resulted in activation and slightly decreased accumulation of LCMV-specific CD8 T cells. Moreover, there was a dramatic reduction of in vivoIFN-γ production by LCMV-specific IL-12KO CD8 T cells in the lung. I interpreted this to mean that IL-12 was important to augment IFN-γ production by memory CD8 T cells upon TCR engagement by antigens and to induce further accumulation of activated memory CD8 T cells during the heterologous viral infection. This thesis also systematically examined what effect the sequence of two heterologous virus challenges had on viral clearance, early cytokine profiles and immunopathology in the lung after infecting mice immune to one virus with another unrelated viruses. Four unrelated viruses, [LCMV, VV, influenza A virus or murine cytomegalovirus (MCMV)], were used. There were many common changes observed in the acute response to VV as a consequence of prior immunity to any of three viruses, LCMV, MCMV or influenza A virus. These included the enhanced clearance of VV in the lung, associated with enhanced TH1 type responses with increased IFN-γ and suppressed pro-inflammatory responses. However, immunity to the three different viruses resulted in unique pathologies in the VV-infected lungs, but with one common feature, the substitution of lymphocytic and chronic mononuclear infiltrates for the usual acute polymorphonuclear response seen in non-immune mice. Immunity to influenza A virus appeared to influence the outcome of subsequent acute infections with any of the three viruses, VV, LCMV and MCMV. Most notably, influenza A virus-immunity protected against VV but it actually enhanced LCMV and MCMV titers. This enhanced MCMV replication was associated with enhanced TH1 type response and pro-inflammatory cytokine responses. Immunity to influenza A virus appeared to dramatically enhance the mild lymphocytic and chronic mononuclear response usually observed during acute infection with either LCMV or MCMV in non-immune mice, but LCMV infection and MCM infection of influenza A virus-immune mice each had its own unique features. Thus, the specific sequence of virus infections controls the outcome of disease.
19

Regulation of Immune Pathogenesis by Antigen-Specific CD8 T Cells Following Sequential Heterologous Infections: A Dissertation

Chen, Alex T. 09 April 2010 (has links)
Previously, our lab demonstrated that heterologous immunity could result in either gain or loss of protective immunity and alteration in immune pathology following infection by a second un-related pathogen. One of the prototypical models to study T cell-mediated heterologous immunity involves two distantly related arenaviruses, namely lymphocytic choriomeningitis virus (LCMV) and Pichinde virus (PV). Each virus encodes a cross-reactive CD8 epitope that has six out of eight in amino acid (aa) similarity with respect to its counterpart at the position 205-212 of the nucleoprotein (NP205). Heterologous challenge between LCMV and PV results in 1) expansion of the cross-reactive NP205-specific CD8 T cell responses and alteration of the immunodominance hierarchy and 2) partial protective immunity (heterologous immunity). Our lab showed that cross-reactive NP205-specific CD8 T cell receptor (TCR) repertoires become extremely narrowed following a heterologous challenge between LCMV and PV. Therefore, I questioned if LCMV NP205 epitope escape variants could be isolated during a dominant but narrowed crossVI reactive NP205-specific CTL response. In the first part of my thesis, I describe the isolation of a LCMV NP-V207A CTL escape variant in vivo using PV-immune animals challenged with LCMV clone 13. The LCMV NP-V207A variant contains a point mutation, which results in the switching of valine to alanine at the third non-anchoring residue of the LCMV NP205 CD8 epitope. Immunization of mice with the LCMV NP-V207A variant results in a significantly diminished cross-reactive NP205-specific CD8 T cell response. This suggests that the point mutation is responsible for the loss in the immunogenicity of the LCMV NP205 CD8 epitope. In addition, an in vitrorescued(r) recombinant LCMV variant (r/V207A) that encodes the original mutation also induces a highly diminished cross-reactive NP205-specific CD8 T cell response in mice. In agreement with the result obtained from the intracellular cytokine assays (ICS), MHC-Ig dimers loaded with the LCMV NP205 (V-A) peptide could only detect a minute population of cross-reactive NP205-specific CD8 T cells in mice infected with r/V207A variant virus. All the data indicate that the point mutation results in a significant loss in immunogenicity of the LCMV NP205 CD8 epitope. So far, no direct link between the cross-reactive NP205-specific CD8 T cells and heterologous immunity had been established in this system. Therefore, we immunized mice with either LCMV WT or the LCMV NP-V207A variant virus and showed that a significant loss of heterologous immunity is associated with the group immunized with LCMV NP-V207A variant virus. Again, r/V207Aimmune animals also displayed a significant loss in heterologous immunity following PV challenge. This suggests that the cross-reactive NP205-specific CD8 T cells mediate the majority of heterologous immunity between LCMV and PV in vivo. In comparison to the PV-immune control group, PV clearance kinetics mediated by the cross-reactive NP205-specific CD8 T cells were significantly delayed. Finally, these data also suggest that bystander activation plays very little role in heterologous immunity between LCMV and PV. Many studies in murine systems and humans suggest that cross-reactive T cells are often associated with immune pathology. We showed that in mice that were sequentially immunized with PV and LCMV (PV+LCMV WT double immune mice), there was a development of a high incidence and high level of immune pathology known as acute fatty necrosis (AFN) following a final PV challenge. The data suggest that these cross-reactive NP205-specific CD8 T cells might play an important role in immune pathogenesis. Therefore, we asked if the cross-reactive NP205-specific CD8 T cells play a role in immune pathogenesis by comparing the incidence of AFN between the (PV+LCMV WT) and the (PV+LCMV NP-V207A) double immune mice following a final PV challenge. In agreement with our hypothesis, the result showed the (PV+LCMV NP-V207A) double immune mice developed a significantly lower incidence of AFN compared to the (PV+LCMV WT) double immune mice. However, linear correlation studies comparing the frequency of different antigen-specific CD8 T cell populations within the (PV+LCMV WT) double immune mice before challenge and the severity of AFN following the PV challenge suggest that two opposing antigen-specific CD8 T cell populations are involved in determining the final outcome of the immune pathology. The PV NP38-45-specific CD8 T cell response (PV NP38) appears to be more protective than the cross-reactive NP205-specific CD8 T cell response. In addition, a positive linear correlation between the ratio of cross-reactive NP205 to PV NP38 and the severity of AFN seem to suggest that these cross-reactive populations are important contributors to immune pathogenesis. Peptide titration studies examining the functional avidities to different antigenic specificities suggest that both populations consist of high avidity TCR and peptide MHC (TCR:pMHC) interactions. However, skewing within the cross-reactive NP205 specific CD8 T cell response towards the LCMV NP205 epitope response in one of the (PV+LCMV WT) double immune mice suggests that cross-reactive NP205 specific CD8 T cells could constitute a sub-optimal response to a PV challenge. In summary, I questioned what might be some of the immunological consequences of heterologous immunity in this model. First of all, we have established a direct link between the cross-reactive NP205-specific CD8 T cell response and heterologous immunity in LCMV and PV. Second of all, I demonstrated that a LCMV NP205 epitope escape variant could be selected in vivo under the conditions of heterologous immunity. In addition, I showed that PV clearance kinetic was significantly delayed in cross-reactive NP205-mediated heterologous immunity as compared to homologous challenge. Finally, we demonstrated that cross-reactive NP205-specific CD8 T cells could play an important role in immune pathogenesis in this model. However, correlation data indicate that two opposing antigen-specific CD8 T cell populations could ultimately decide the outcome and magnitude of immune pathology in each individual mouse. All the data presented above strongly suggest that the cross-reactive NP205 CD8 T cells play a crucial role in immune pathology in this model system by 1) interfering with the regular establishment of immunodominance hierarchy orders, or 2) exhibiting a sub-optimal protective immunity due to the nature of the cross-reactive epitope.
20

Heterologous Immunity and T Cell Stability During Viral Infections: A Dissertation

Che, Jenny Wun-Yue 10 February 2014 (has links)
The immune response to an infection is determined by a number of factors, which also affect the generation of memory T cells afterwards. The immune response can also affect the stability of the pre-existing memory populations. The memory developed after an infection can influence the response to subsequent infections with unrelated pathogens. This heterologous immunity may deviate the course of disease and alter the disease outcome. The generation and stability of memory CD8 T cells and the influence of the history of infections on subsequent heterologous infections are studied in this thesis using different viral infection sequences. Previous studies using mice lacking individual immunoproteasome catalytic subunits showed only modest alterations in the CD8 T cell response to lymphocytic choriomeningitis virus (LCMV). In this study, I found that the CD8 T cell response to LCMV was severely impaired in mice lacking all three catalytic subunits of the immunoproteasome, altering the immunodominance hierarchy of the CD8 T cell response and CD8 T cell memory. Adoptive transfer experiments suggested that both inefficient antigen presentation and altered T cell repertoire contribute to the reduction of the CD8 T cell response in the immunoproteasome knockout mice. Immune responses generated during infections can reduce pre-existing memory T cell populations. Memory CD8 T cells have been shown to be reduced by subsequent heterologous infections. In this study, I re-examined the phenomenon using immune mice infected with LCMV, murine cytomegalovirus (MCMV) and vaccinia virus (VACV) in different infection sequences. I confirmed that memory CD8 T cells were reduced by heterologous infections, and showed that LCMV-specific memory CD4 T cells were also reduced by heterologous infections. Reduction of the memory CD8 T cells is thought to be the result of apoptosis of memory CD8 T cells associated with the peak of type I interferon early during infection. I showed that memory CD4 T cells were similarly driven to apoptosis early during infection; however, Foxp3+ CD4+ regulatory T cells were relatively resistant to virus infection-induced apoptosis, and were stably maintained during LCMV infection. The stability of Treg cells during viral infections may explain the relatively low incidence of autoimmunity associated with infections. The history of infections can deviate the course of disease and affect the disease outcome, but this heterologous immunity is not necessarily reciprocal. Previous studies have shown the effects of heterologous immunity during acute infections. In this thesis, I showed that the history of LCMV infection led to higher viral titers during persistent MCMV infection, caused more severe immunopathology at the beginning of infection, and reduced the number of MCMV-specific inflationary memory CD8 T cells after the period of memory inflation. In a different context of infection, the history of LCMV infection can be beneficial. LCMV-immune mice have been shown to have lower viral titers after VACV infection, but VACV-immune mice are not protected during LCMV infection. I found that memory CD8 T cells generated from LCMV and VACV infections were phenotypically different, but the differences could not explain the nonreciprocity of heterologous immunoprotection. By increasing the number of crossreactive VACV A11R198-205-specific memory CD8 T cells, however, I showed that some VACV-immune mice displayed reduced viral titers upon LCMV challenge, suggesting that the low number of potentially cross-reactive CD8 T cells in VACV-immune mice may be part of the reasons for the non-reciprocity of immunoprotection between LCMV and VACV. Further analysis deduced that both number of potentially cross-reactive memory CD8 T cells and the private specificity of memory CD8 T cell repertoire played a part in determining the outcome of heterologous infections.

Page generated in 0.0682 seconds