Spelling suggestions: "subject:"immunosignaturing"" "subject:"immunosignature""
1 |
Characterization and Analysis of a Novel Platform for Profiling the Antibody ResponseJanuary 2011 (has links)
abstract: Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze the factors affecting the binding patterns using monoclonal antibodies and determine how much information may be extracted from the sequences. Specifically, I examined the effects of antibody concentration, competition, peptide density, and antibody valence. Peptide binding could be detected at the low concentrations relevant to immunosignaturing, and a monoclonal's signature could even be detected in the presences of 100 fold excess naive IgG. I also found that peptide density was important, but this effect was not due to bivalent binding. Next, I examined in more detail how a polyreactive antibody binds to the random sequence peptides compared to protein sequence derived peptides, and found that it bound to many peptides from both sets, but with low apparent affinity. An in depth look at how the peptide physicochemical properties and sequence complexity revealed that there were some correlations with properties, but they were generally small and varied greatly between antibodies. However, on a limited diversity but larger peptide library, I found that sequence complexity was important for antibody binding. The redundancy on that library did enable the identification of specific sub-sequences recognized by an antibody. The current immunosignaturing platform has little repetition of sub-sequences, so I evaluated several methods to infer antibody epitopes. I found two methods that had modest prediction accuracy, and I developed a software application called GuiTope to facilitate the epitope prediction analysis. None of the methods had sufficient accuracy to identify an unknown antigen from a database. In conclusion, the characteristics of the immunosignaturing platform observed through monoclonal antibody experiments demonstrate its promise as a new diagnostic technology. However, a major limitation is the difficulty in connecting the signature back to the original antigen, though larger peptide libraries could facilitate these predictions. / Dissertation/Thesis / Ph.D. Molecular and Cellular Biology 2011
|
2 |
Analysis of Immunosignaturing Case StudiesJanuary 2012 (has links)
abstract: Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state. / Dissertation/Thesis / Ph.D. Biological Design 2012
|
Page generated in 0.0475 seconds