• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 15
  • 15
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and Validation of a Finite Element Dummy Lower Limb Model for Under-body blast Applications

Baker, Wade Andrew 18 July 2017 (has links)
An under-body blast (UBB) refers to the use of a roadside explosive device to target a vehicle and its occupants. During Operation Iraqi Freedom, improvised explosive devices (IEDs) accounted for an estimated 63% of US fatalities. Furthermore, advancements in protective equipment, combat triage, and treatment have caused an increase in IED casualties surviving with debilitating injuries. Military vehicles have been common targets of IED attacks because of the potential to inflict multiple casualties. Anthropomorphic test devices (ATDs) are mechanical human surrogates designed to transfer loads and display kinematics similar to a human subject. ATDs have been used successfully by the automotive industry for decades to quantify human injury during an impact and assess safety measures. Currently the Hybrid III ATD is used in live-fire military vehicle assessments. However, the Hybrid III was designed for frontal impacts and demonstrated poor biofidelity in vertical loading experiments. To assess military vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD) was developed and optimized for vertical loading. ATDs, commonly referred to as crash dummies, are designed to estimate the risk of injuries to a human during an impact. The main objective of this study was to develop and validate a Finite Element (FE) model of the ATD lower limb. / Master of Science / An under-body blast (UBB) refers to the use of a roadside explosive device to target a vehicle and its occupants. During Operation Iraqi Freedom, improvised explosive devices (IEDs) accounted for an estimated 63% of US fatalities. Furthermore, advancements in protective equipment, combat triage, and treatment have caused an increase in IED casualties surviving with debilitating injuries. Military vehicles have been common targets of IED attacks because of the potential to inflict multiple casualties. Anthropomorphic test devices (ATDs) are mechanical human surrogates designed to transfer loads and display kinematics similar to a human subject. ATDs have been used successfully by the automotive industry for decades to quantify human injury during an impact and assess safety measures. Currently the Hybrid III ATD is used in live-fire military vehicle assessments. However, the Hybrid III was designed for frontal impacts and demonstrated poor biofidelity in vertical loading experiments. To assess military vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD) was developed and optimized for vertical loading. ATDs, commonly referred to as crash dummies, are designed to estimate the risk of injuries to a human during an impact. The main objective of this study was to develop and validate a Finite Element (FE) model of the ATD lower limb.
12

Novel Compliant Flooring Systems from Head to Toes: Influences on Early Compensatory Balance Reactions in Retirement-Home Dwelling Adults and on Impact Dynamics during Simulated Head Impacts

Wright, Alexander David 16 June 2011 (has links)
The overall goal of my research was to advance our understanding of the potential for novel compliant flooring systems to reduce the risk for fall-related injuries in older adults, including fall-related traumatic brain injury (TBI). This entailed an assessment of how these floors affect the competing demands of fall-related TBI – impact severity attenuation in concert with minimal concomitant impairments to balance control and postural stability. Two studies are included as part of this thesis. The first study used a mechanical drop tower to assess the effects of four traditional flooring systems and six novel compliant flooring conditions on the impact dynamics of a surrogate headform during the impact phase of simulated ‘worst- case’ head impacts. The second study entailed an assessment of the effect of two traditional and three novel compliant floors on the initial phase of the compensatory balance reactions of older adult men and women living in a residential-care facility environment following an externally induced perturbation using a tether-release paradigm. Overall, this thesis demonstrates that novel compliant floors substantially attenuate the forces and accelerations applied to the head during simulated worst- case impacts when compared to traditional flooring surfaces such as vinyl and carpet with underpadding. These benefits are achieved without compromising indices of balance control, supported by the finding that parameters characterizing early compensatory balance reactions were unaffected by the novel compliant floors tested. This work supports the introduction of pilot installations of novel compliant flooring systems into environments with high incidences of falls to test their effectiveness at reducing fall-related injuries in clinical settings.
13

Novel Compliant Flooring Systems from Head to Toes: Influences on Early Compensatory Balance Reactions in Retirement-Home Dwelling Adults and on Impact Dynamics during Simulated Head Impacts

Wright, Alexander David 16 June 2011 (has links)
The overall goal of my research was to advance our understanding of the potential for novel compliant flooring systems to reduce the risk for fall-related injuries in older adults, including fall-related traumatic brain injury (TBI). This entailed an assessment of how these floors affect the competing demands of fall-related TBI – impact severity attenuation in concert with minimal concomitant impairments to balance control and postural stability. Two studies are included as part of this thesis. The first study used a mechanical drop tower to assess the effects of four traditional flooring systems and six novel compliant flooring conditions on the impact dynamics of a surrogate headform during the impact phase of simulated ‘worst- case’ head impacts. The second study entailed an assessment of the effect of two traditional and three novel compliant floors on the initial phase of the compensatory balance reactions of older adult men and women living in a residential-care facility environment following an externally induced perturbation using a tether-release paradigm. Overall, this thesis demonstrates that novel compliant floors substantially attenuate the forces and accelerations applied to the head during simulated worst- case impacts when compared to traditional flooring surfaces such as vinyl and carpet with underpadding. These benefits are achieved without compromising indices of balance control, supported by the finding that parameters characterizing early compensatory balance reactions were unaffected by the novel compliant floors tested. This work supports the introduction of pilot installations of novel compliant flooring systems into environments with high incidences of falls to test their effectiveness at reducing fall-related injuries in clinical settings.
14

FROM THE WAYNE STATE TOLERANCE CURVE TO MACHINE LEARNING: A NEW FRAMEWORK FOR ANALYZING HEAD IMPACT KINEMATICS

Breana R Cappuccilli (12174029) 20 April 2022 (has links)
Despite the alarming incidence rate and potential for debilitating outcomes of sports-related concussion, the underlying mechanisms of injury remain to be expounded. Since as early as 1950, researchers have aimed to characterize head impact biomechanics through in-lab and in-game investigations. The ever-growing body of literature within this area has supported the inherent connection between head kinematics during impact and injury outcomes. Even so, traditional metrics of peak acceleration, time window, and HIC have outlived their potential. More sophisticated analysis techniques are required to advance the understanding of concussive vs subconcussive impacts. The work presented within this thesis was motivated by the exploration of advanced approaches to 1) experimental theory and design of impact reconstructions and 2) characterization of kinematic profiles for model building. These two areas of investigation resulted in the presentation of refined, systematic approaches to head impact analysis that should begin to replace outdated standards and metrics.
15

Modélisation par éléments-finis des traumatismes crâniens du nourrisson / Finite-element modelling of infant head injuries

Nadarasa, Jeyendran 15 February 2018 (has links)
La biomécanique des chocs vise à étudier les lésions, établir des limites de tolérance et de proposer des mesures de protections adéquates. La méthode des éléments-finis permet l’étude approfondie des mécanismes de lésions, évitant des problèmes liés à l’expérimentation et d’éthique. La biomécanique de la tête humaine chez l’adulte a pris ce virage très tôt, et des modèles de la tête de l’adulte existent, dont celui développé à l’Université de Strasbourg : le SUFEHM (Strasbourg University Finite Element Head Model). Le présent projet a pour but d’ouvrir cette thématique à la modélisation des traumatismes crâniens du nourrisson. Deux axes de travail ont été conduits successivement pour étudier des situations d’accidents et de maltraitances. Le premier axe consiste à développer un modèle de l’œil du nourrisson pour l’étude des hémorragies rétiniennes. Le deuxième consiste à améliorer le modèle de tête en intégrant d’une part les données de l’imagerie médicale comme l’orientation et la densité des fibres axonales, et d’autre part en validant la formulation du crâne pour prédire les fractures crâniennes. / Impact biomechanics aim at studying injuries, establishing tolerance limit and propose efficient protective systems. The finite-element method permits to study precisely injury mechanisms by avoiding questions linked to experimentation and ethics. For the human adult head biomechanics, this methodology was taken earlier and several stable and validated models exist worldwide, among which one can find the Strasbourg University Finite Element Head Model (SUFEHM). This thesis aims at widening the human head biomechanics by studying infant head trauma. The research work has been conducted in two steps. In the first one, an infant eye numerical model was developed in order to study retinal hemorrhages. The second one consisted in improving the infant head model by integrating medical images data such as axonal fiber density and orientations into the infant brain and by validating the mechanical formulation of the infant skull in order to predict skull fractures.

Page generated in 0.073 seconds