Spelling suggestions: "subject:"1mpact damage"" "subject:"compact damage""
11 |
Ballistic response of aluminium alloy and carbon fibre reinforced plastic panels with pretensionKamarudin, Kamarul Azhar January 2015 (has links)
Aircraft disasters during take-off and landing by the impact of foreign object debris (FOD) have always been an important issue. When the wing is lifted, its upper and bottom surfaces are subjected to compressive and tensile stresses, respectively. The bottom surface of the aircraft wing is vulnerable due to the threat of runway debris, which may travel at high speed, leading to the catastrophic failure of structures under tension. This thesis studies the ballistic performance of a structural panel subjected to projectile impact when the influence of in-plane pretension is considered. An experimental program was proposed to obtain the laboratory testing results where a special rig was designed to apply pretension to the panel as it is being hit by a projectile launched from a gas gun at velocities between 60 to 160 m/s. Instrumentation was used to record impact and residual velocities at different stages of the impact process. The panel was supported on opposing sides in one direction with two free sides in the other direction. Two target materials related to aircraft structure were considered, i.e., aluminium alloy, 2014-T6 and carbon fiber reinforced plastic (CFRP). Two projectile nose shapes - including flat and hemisphere - were used to account for the influence of debris on the ballistic performance of the target. Target materials were fully characterized in the experimental program. Finite element (FE) models were established and validated, and were used to simulate the response and damage of the panels in the experiments when the influence of pretension is considered. The damage of aluminium alloy, 2014-T6 was modeled using shear failure criterion with damage evolution. For CFRP, the in-plane damage initiation was modeled using Hashin’s damage criterion with damage evolution in terms of fracture energy. Parametric studies were done for both aluminium alloy 2014-T6 and CFRP panels with various pretensions of up to 50% of the material ultimate strength. It has been shown that the pretension has more profound effect on the ballistic behavior of the CFRP panel in comparison with its influence on the ballistic behavior of aluminium alloy panel. The simplified analyses and the numerical modeling reflect the physical nature of the impact response and damage of aluminium alloy and CFRP target panels. Hashin’s damage model for CFRP needs to be extended from in-plane to out-of-plane in order to include shear failure, which may happen for the flat nose projectile impact.
|
12 |
Inspeção termográfica de danos por impacto em laminados compósitos sólidos de matriz polimérica reforçada com fibras de carbono. / Thermographic inspection of impact damage in solid fiber-reinforced polymer matrix composite laminates.Euripedes Guilherme Raphael de Almeida 30 April 2010 (has links)
Laminados compósitos com matrizes poliméricas, respectivamente termorrígida e termoplástica, reforçadas com fibras contínuas de carbono foram submetidos a impacto único transversal com diferentes níveis de energia. Os danos imprimidos aos materiais estruturais foram avaliados por termografia ativa infravermelha na modalidade transmissão. Em geral, os termogramas do laminado termoplástico apresentaram indicações mais claras e bem definidas dos danos causados por impacto, se comparados aos do compósito termorrígido. O aquecimento convectivo das amostras por fluxo controlado de ar se mostrou mais eficaz que o realizado por irradiação, empregando-se lâmpadas incadecentes. Observou-se também que tempos mais longos de aquecimento favoreceram a visualização dos danos. O posicionamento da face impactada do espécime, relativamente à câmera infravermelha e à fonte de calor, não afetou a qualidade dos termogramas no caso do laminado termorrígido, enquanto que influenciou significativamente os termogramas do compósito termoplástico. Os resultados permitiram concluir que a termografia infravermelha é um método de ensaio não-destrutivo simples, robusto e confiável para a detecção de danos por impacto inferior à 5 Joules em laminados compósitos poliméricos reforçados com fibras de carbono. / Continuous carbon fiber-reinforced thermosetting and thermoplastic composite laminates were exposed to single transversal impact with different energy levels. The damages marked to the structural materials were evaluated by active infrared thermography in transmission mode. In general, the thermoplastic laminate thermograms showed more clear and delineated damage indications when compared to the ones from thermosetting composite. The convective heating of the samples by controlled hot air flow was more efficient than via irradiation using lamp. It was also observed that longer heating times improved the damage visualization. The positioning of the specimen´s impacted face regarding the infrared camera and the heating source did not affect the thermo-imaging of thermosetting specimens, whereas it substantially influenced the thermograms of thermoplastic laminates. The results allow concluding that infrared thermography is a simple, robust and trustworthy methodology for detecting impact damages as light as 5 Joules in carbon fiber composite laminates.
|
13 |
Characterization Of Impact Damage And Fiber Reinforced Polymer Repair Systems For Metallic Utility PolesJohnson, Cara 01 January 2013 (has links)
Previous studies have demonstrated that the behavior of fiber reinforced polymers (FRPs) bonded to metallic utility poles are governed by the following failure modes; yielding of the metallic substrate, FRP tensile rupture, FRP compressive buckling, and debonding of FRP from the substrate. Therefore, an in situ method can be devised for the repair of utility poles, light poles, and mast arms that returns the poles to their original service strength. This thesis investigates the effect of damage due to vehicular impact on metallic poles, and the effectiveness of externally-bonded FRP repair systems in restoring their capacity. Damage is simulated experimentally by rapid, localized load application to pole sections, creating dents ranging in depth from 5 to 45% of the outer diameter. Four FRP composite repair systems were selected for characterization and investigation due to their mechanical properties, ability to balance the system failure modes, and installation effectiveness. Bending tests are conducted on dented utility poles, both unrepaired and repaired. Nonlinear finite element models of dented and repaired pole bending behavior are developed in MSC.Marc. These models show good agreement with experimental results, and can be used to predict behavior of full-scale repair system. A relationship between dent depth and reduced pole capacity is developed, and FRP repair system recommendations are presented
|
14 |
Development and Validation of a DEM-based Model for Predicting Grain DamageZhengpu Chen (7036694) 20 May 2024 (has links)
<p dir="ltr">During agricultural production, grain damage is a persistent problem that reduces grain quality. The goal of this study is to develop mechanics-based models that can accurately predict grain damage caused by mechanical handling processes and validate the models with lab-scale and industrial-scale test systems.</p><p dir="ltr">A discrete element method (DEM) simulation was developed to predict the impact damage of corn kernels in a Stein breakage tester. The DEM model relied on an empirically generated, three-parameter Weibull distribution describing the damage probability of repeated impacts. It was found that the DEM model was able to give good predictions on the kernel damage fraction for different sample sizes and operating times. The root-mean-square deviation between the damage fractions acquired from the simulation and experiment is 0.05. A sensitivity analysis was performed to study the effects of material and interaction properties on damage fraction. It was found that damage resistance parameters, coefficients of restitution, and particle shape representation had a significant effect on damage fraction. The statistics of the number of contacts and impact velocity were collected in the simulation to interpret the results of sensitivity analysis at the contact level. The locations where the damage occurs on the particle and in the operating device were also predicted by the model.</p><p dir="ltr">In addition to impact damage, another major type of grain damage is compression damage caused by mechanical harvesting and handling processes. A mechanistic model was developed to predict the compression damage of corn kernels using the DEM. The critical model input parameters were determined using a combination of single kernel direct measurements and bulk kernel calibration tests. The Young's modulus was measured with a single kernel compression test and verified with a bulk kernel compression test. An innovative approach was proposed to calibrate the average failure stress using a bulk kernel compression test. After implementation of the model, a validation test was performed using a Victoria mill. Comparing the simulation and the experimental results demonstrated that the simulation gave a good prediction of the damage fraction and the location of the damage when the von Mises stress damage criterion with a variable damage threshold was used. A sensitivity analysis was conducted to study the effects of selected model input parameters, including particle shape, Young's modulus, particle-particle coefficient of friction, particle-boundary coefficient of friction, particle-boundary coefficient of restitution, and damage criterion.</p><p dir="ltr">An industrial-scale handling system was designed and built to validate the DEM-based grain impact damage model. The low moisture content corn and soybean samples were handled through the system at three impeller speed levels and two feed rate levels, and the amount of damage caused by handling was evaluated. DEM simulations with the impact damage model were constructed and run under the corresponding test conditions. The experimental results showed that grain damage increased with increasing impeller speed and decreasing feed rate, which aligned with the model predictions. The simulated damage fraction values were larger than the experimental measurements when the experimentally-measured DEM input parameters were used. The simulation predictions can be significantly improved by decreasing the particle-boundary coefficient of restitution (PB COR). The mean absolute error between the simulation and experimental results decreased from 0.14 to 0.02 for the corn tests and from 0.05 to 0.01 for the soybean tests after the reduction of PB COR.</p><p dir="ltr">The developed damage models can accurately predict the amount of grain damage and the locations where the damage occur within a grain handling system. The models are expected to be useful in providing guidance on designing and operating grain handling processes to minimize kernel damage and, thus, improve grain quality. To further improve the performance of the model, the methods that accurately and efficiently determine the model input parameters need to be explored. In addition, in this work, the models were only applied to corn and soybeans at specific conditions. The applicability of the model to other types of grain, such as rice, or other grain conditions, such as wet corn, should be investigated.</p>
|
15 |
Damage resistance and tolerance investigation of carbon/epoxy skinned honeycomb sandwich panelsHill, Michelle Denise January 2007 (has links)
This thesis documents the findings of a three year experimental investigation into the impact damage resistance and damage tolerance of composite honeycomb sandwich panels. The primary area of work focuses on the performance of sandwich panels under quasi-static and low-velocity impact loading with hemispherical and flat-ended indenters. The damage resistance is characterised in terms of damage mechanisms and energy absorption. The effects of varying the skin and core materials, skin thickness, core density, panel boundary conditions and indenter shape on the transverse strength and energy absorption of a sandwich panel have been examined. Damage mechanisms are found to include delamination of the impacted skin, core crushing, limited skin-core de bonding and top skin fibre fracture at high loads. In terms of panel construction the skin thickness is found to dominate the panel strength and energy absorption with core density having a lesser influence. Of the external factors considered the indenter noseshape has the largest effect on both failure load and associated damage area. An overview of existing analytical prediction methods is also included and the most significant theories applied and compared with the experimental results from this study. The secondary area of work expands the understanding obtained from the damage resistance study and assesses the ability of a sandwich panel to withstand in-plane compressive loading after sustaining low-velocity impact damage. The importance of the core material is investigated by comparing the compression-after-impact strength of both monolithic carbon-fibre laminates and sandwich panels with either an aluminium or nomex honeycomb core. The in-plane compressive strength of an 8 ply skinned honeycomb sandwich panel is found to be double that of a 16 ply monolithic laminate, with the type of honeycomb also influencing the compressive failure mechanisms and residual compressive strength. It is concluded that under in-plane loading the stabilising effect of the core opposes the de-stabilising effect of any impact damage.
|
16 |
Carbon Fiber Reinforced Polymer Repairs of Impact-Damaged Prestressed I-GirdersBrinkman, Ryan J. January 2012 (has links)
No description available.
|
17 |
Bioinspired Material Design and Performance Characterization for Extreme EnvironmentBanik, Arnob 06 December 2022 (has links)
No description available.
|
18 |
Failure of Sandwich Structures with Sub-Interface DamageShipsha, Andrey January 2001 (has links)
No description available.
|
19 |
Failure of Sandwich Structures with Sub-Interface DamageShipsha, Andrey January 2001 (has links)
No description available.
|
20 |
Experimental impact damage resistance and tolerance study of symmetrical and unsymmetrical composite sandwich panelsNash, Peter January 2016 (has links)
This thesis presents the work of an experimental investigation into the impact damage resistance and damage tolerance for symmetrical and unsymmetrical composite honeycomb sandwich panels through in-plane compression. The primary aim of this research is to examine the impact damage resistance of various types of primarily carbon/epoxy skinned sandwich panels with varying skin thickness, skin lay-up, skin material, sandwich asymmetry and core density and investigate the residual in-plane compressive strengths of these panels with a specific focus on how the core of the sandwich contributes to the in-plane compressive behaviour. This aim is supported by four specifically constructed preconditions introduced into panels to provide an additional physical insight into the loading-bearing compression mechanisms. Impact damage was introduced into the panels over a range of IKEs via an instrumented drop-weight impact test rig with a hemi-spherical nosed impactor. The damage resistance in terms of the onset and propagation of various dominant damage mechanisms was characterised using damage extent in both impacted skin and core, absorbed energy and dent depth. Primary damage mechanisms were found to be impacted skin delamination and core crushing, regardless of skin and core combinations and at high energies, the impacted skin was fractured. In rare cases, interfacial skin/core debonding was found to occur. Significant increases in damage resistance were observed when skin thickness and core density were increased. The reduction trends of the residual in-plane compressive strengths of all the panels were evaluated using IKE, delamination and crushed core extents and dent depth. The majority of impact damaged panels were found to fail in the mid-section and suffered an initial decline in their residual compressive strengths. Thicker skinned and higher density core panels maintained their residual strength over a larger impact energy range. Final CAI strength reductions were observed in all panels when fibre fracture in the impacted skin was present after impact. Thinner skinned panels had a greater compressive strength over the thicker skinned panels, and panel asymmetry in thin symmetrical panels appeared to result in an improving damage tolerance trend as IKE was increased due to that the impact damage balanced the in-plane compressive resistance in the skins with respect to the pre-existing neutral plane shift due to the uneven skin thickness.
|
Page generated in 0.0462 seconds