Spelling suggestions: "subject:"impedance"" "subject:"lmpedance""
101 |
An approximation method for electrical impedance tomographyPereira, Paulo J. S. 11 1900 (has links)
Electrical impedance tomography is an imaging method with applications
to geophysics and medical imaging. A new approximation is presented based on Nachman's 2-dimensional construction for closed domains. It
improves upon existing approximations by extending the range of application from resolving 2 times the surface conductivity to imaging perfect conductors and insulators. With perfect knowledge of boundary data, this approximation exactly resolves a single conductive disc embedded in a homogenous domain. The problem, however, is ill-posed, and imaging performance degrades quickly as the distance from the boundary increases.
The key to the approximation lies in (a) approximating Fadeev's Green's function (b) pre-processing measured voltages based on a boundary-integral equation (c) solving a linearized inverse problem (d) solving a d-bar equation, and (e) scaling the resulting image based on analytical results for a disc. In the development of the approximation, a new formula for Fadeev's Green's function is presented in terms of the Exponential Integral function. Also, new comparisons are made between reconstructions with and without solving the d-bar equation, showing that the added computational expense of solving the d-bar equation is not justified for radial problems. There is no discernible improvement in image quality. As a result, the approximation converts the inverse conductivity problem into a novel one-step linear problem with pre-conditioning of boundary data and scaling of the resulting image.
Several extensions to this work are possible. The approximation is implemented for a circular domain with unit conductivity near the boundary, and extensions to other domains, bounded and unbounded should be possible, with non-constant conductivity near the boundary requiring further approximation. Ultimately, further research is required to ascertain whether it is possible to extend these techniques to imaging problems in three dimensions.
|
102 |
Application of impedance tube technique in the measurement of burning solid propellant admittancesSalikuddin, Mohammed 05 1900 (has links)
No description available.
|
103 |
An investigation of the diffraction of an acoustic plane wave by a curved surface of finite impedanceKearns, James A. 12 1900 (has links)
No description available.
|
104 |
A Broadband Approach to Measuring Acoustic Impedance and Roughness using Spherical HydrophonesNoonchester, Mark January 2010 (has links)
The ARG (Acoustic Research Group) at the University of Canterbury has a goal to image objects buried under the seafloor. In order to image these objects, accurate models and a good understanding of the acoustic parameters of the seafloor are needed. The relevant acoustic parameters to model the seafloor include: physical classification, speed of sound, acoustic impedance, density, and roughness.
Acquiring accurate acoustic parameters for the seafloor is a challenging task that requires different approaches depending on the environment, especially in locations
with low visibility. This thesis looks at a non-invasive method of acoustically examining the roughness spectrum and acoustic impedance of the seafloor. To achieve these goals, spherical transducers with a continuous bandwidth between 30 kHz and 130 kHz were chosen to examine the frequency dependent specular and diffused components of the reflection from rough seafloor surfaces.
Using spherical transducers allows the surface scattering to be examined independently of the transducer beam-pattern. This thesis examines the range and validity of the tools required to make these measurements and presents empirical results measured in the controlled environment of a cylindrical 3.5m diameter by 2m deep sonar test tank. Using results from the sonar test tank, this thesis demonstrates that the acoustic impedance, speed of sound, and density of the material of the seafloor can be measured from a single seafloor realisation measured at multiple angles, provided the seafloor material has a critical angle. Additionally, this thesis demonstrates that the spectrum of the specular and diffused components of the rough-surface reflection requires averaging multiple seafloor realisations to be statistically relevant. As well as describing the benefits of using spherical transducers, this thesis presents some of the problems and potential solutions for future applications.
|
105 |
A study of the electrochemical phenomena occurring during the corrosion of Armco iron in methanol solutionsBoucher, Dawn R January 1996 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1996. / Includes bibliographical references (leaves 227-230). / Microfiche. / xxii, 230 leaves, bound ill. 29 cm
|
106 |
An approximation method for electrical impedance tomographyPereira, Paulo J. S. 11 1900 (has links)
Electrical impedance tomography is an imaging method with applications
to geophysics and medical imaging. A new approximation is presented based on Nachman's 2-dimensional construction for closed domains. It
improves upon existing approximations by extending the range of application from resolving 2 times the surface conductivity to imaging perfect conductors and insulators. With perfect knowledge of boundary data, this approximation exactly resolves a single conductive disc embedded in a homogenous domain. The problem, however, is ill-posed, and imaging performance degrades quickly as the distance from the boundary increases.
The key to the approximation lies in (a) approximating Fadeev's Green's function (b) pre-processing measured voltages based on a boundary-integral equation (c) solving a linearized inverse problem (d) solving a d-bar equation, and (e) scaling the resulting image based on analytical results for a disc. In the development of the approximation, a new formula for Fadeev's Green's function is presented in terms of the Exponential Integral function. Also, new comparisons are made between reconstructions with and without solving the d-bar equation, showing that the added computational expense of solving the d-bar equation is not justified for radial problems. There is no discernible improvement in image quality. As a result, the approximation converts the inverse conductivity problem into a novel one-step linear problem with pre-conditioning of boundary data and scaling of the resulting image.
Several extensions to this work are possible. The approximation is implemented for a circular domain with unit conductivity near the boundary, and extensions to other domains, bounded and unbounded should be possible, with non-constant conductivity near the boundary requiring further approximation. Ultimately, further research is required to ascertain whether it is possible to extend these techniques to imaging problems in three dimensions.
|
107 |
Impedance measurement system for embryonic stem cell and embryoid body culturesMontgomery, Sarah Lynn January 2008 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Robert Butera; Committee Member: Pamela Bhatti; Committee Member: Todd McDevitt
|
108 |
Brook trout bioenergetics and the use of bioelectrical impedance analysis for proximate compositionCox, Marlin Keith. January 2004 (has links)
Thesis (Ph. D.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains vii, 118 p. : ill. Includes abstract. Includes bibliographical references.
|
109 |
Impedance measurement of resonant sonic crystals /Ho, Kin-Ming. January 2002 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 93). Also available in electronic version. Access restricted to campus users.
|
110 |
A method of measuring the subtransient impedances of salient-pole synchronous machinesTice, William Fleet. January 1942 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1942. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
Page generated in 0.045 seconds