Spelling suggestions: "subject:"impedance 3dmodeling"" "subject:"impedance bymodeling""
1 |
Distributed Coordination and Control of Renewable Energy Sources in MicrogridsKhazaei, Javad Khazaei 14 June 2016 (has links)
Microgrid is an emerging technology in the eld of electrical engineering which employs the concept of Distributed Energy Resources (DERs) in order to generate electricity in a small sized power system. The main objectives of this dissertation are to: 1- design a new control for lower level control of DERs in microgrids, 2- implement distributed upper level control for DERs in microgrids and 3- apply analytical approaches in order to analyze DERs in microgrids. The control in each DER can be divided into two main categories: lower and upper level. Lower level control is the main objective of control in each DER. For example, the lower level control in Photovoltaic (PV) is in charge of transferring the maximum power from sun into the main grid. Unlike the lower level control, the upper level control is an additional control loop on top of the lower level controls. For example, Voltage/Frequency (VF) controllers are installed on top of Active/Reactive (PQ) power controller in energy storage devices as upper level control. In this dissertation, for the lower level control improvements, two widely used DERs are selected (PV, and oshore wind farm) and new control algorithms are developed in order to improve the performance of lower level controllers in these DERs. For the PV lower level improvement, a new control methodology is proposed in order to minimize the maximum power tracking error in PV lower level controller. Second contribution in lower level control is for the oshore wind farm applications based on Multi-Terminal High Voltage Direct Current (MTDC) transmission; a new control is designed in order to minimize the losses in transmission lines through lower level control of High Voltage Direct Current (HVDC) converters.
For the upper level control, this dissertation considers the energy storage as another mostly used type of DER in microgrids. The lower level control for energy storage is in charge of controlling the PQ of the energy storage. The main contribution in the upper level control is to implement the distributed control algorithm based on consensus theory for battery energy storages in order to maximize the efficiency, energy management as well as synchronizing the performance of parallel energy storage devices in microgrids. In this case, the consensus based distributed control algorithm with limited information exchange between neighboring energy storage units is proposed and implemented to validate the claim.
The third contribution of this research is to apply advanced analysis techniques to evaluate the performance of the DERs in microgrids. Two approaches are introduced for microgrid modeling in this research. Firstly, an impedance modeling technique is used to model the oshore wind farm connected to the main AC grid through HVDC transmission line. Multiple Input Multiple Output (MIMO) Nyquist analysis and singular value analysis are used to assess the interactions between HVDC converter and grid. Secondly, an unbalanced microgrid is considered and Dynamic Phasor (DP) analysis is applied in order to nd the stability limitations under different scenarios.
This dissertation has led to seven journal papers (five published, one journal in revision process and one journal submitted recently) and four conference papers.
|
2 |
Dynamics and Control of a Pressurized Optical MembranesTarazaga, Pablo Alberto 07 September 2009 (has links)
Optical membranes are currently pursued for their ability to replace the conventional mirrors that are used to correct wave front aberration and space-based telescopes. Among some of the many benefits of using optical membranes, is their ability to considerably reduce the weight of the structure. As a secondary effect, the cost of transportation, which is of great interest in space applications, is reduced as well. Given the low density of these thin-film membranes, the lower end dynamics play a greater significant role than their rigid plate-like counterparts in achieving functional mirrors. Space-based mirrors are subjected to a series of disturbances. Among those encountered are thermal radiation, debris impact, and slewing maneuvers. Thus, dynamic control is essential for the adequate performance of thin-film membrane mirrors.
With this in mind, the work described herein aims to improve the performance of optical membranes with an innovative, acoustical control approach to suppress vibration of optical membranes backed by an air cavity. This is achieved by using a centralized acoustic source in the cavity as the method of actuation. The acoustic actuation is of great interest since it does not mass load the membrane in the conventional way, as most methods of actuation would.
To achieve this end goal, two structural-acoustic coupled models are developed to describe the dynamics of a pressurized optical membrane system. This is done through an impedance based modeling approach where the subsystems are modeled individually, and then coupled at the interface. The control of the membrane is implemented using a positive position feedback approach. The theory is also extended to positive velocity and positive acceleration feedback.
Three experiments are carried out to validate the models previously mentioned. Successful implementation of a control experiment is also accomplished leading to considerable attenuations in the coupled membrane's dynamics. / Ph. D.
|
3 |
Evaluation of Active Capacitor Banks for Floating H-bridge Power ModulesNguyen, Tam Khanh Tu 07 February 2020 (has links)
The DC-side floating capacitors in the floating power modules of power converters are subject to high voltage fluctuation, due to the presence of reactive harmonic components. Utilizing passive capacitors, as done in traditional methods, helps reduce the DC-bus voltage ripple but makes the system bulky. An active capacitor can be integrated with the floating H-bridge power modules to remove the effect of the ripple powers on the DC bus. The auxiliary circuit, which is much smaller in size compared to an equivalent passive capacitor, helps increase the power density of the system. This work focuses on the analysis of power components, and the extension of the active capacitor to the Perturbation Injection Unit (PIU), in which the DC side is highly distorted by multiple harmonic components. A control scheme is proposed to compensate for these multiple harmonics and balance the DC-link voltage in the active capacitor. Also, an equivalent DC-bus impedance model is introduced, which is more accurate than that in existing works. Simulation studies and evaluation of the design have verified the effectiveness of the active capacitor solution. / Single-phase power converters have been widely used in many applications such as electric vehicles, photovoltaic (PV) systems, and grid integration. Due to their popular application, there is a need to reduce the sizes and volumes while still maintaining good performances of the systems.
One of the most effective methods, which is a subject in many research works, is to replace the bulky passive capacitor bank in a system by an active capacitor. The active capacitor is designed to absorb the ripple components in the DC side of the converters, which results in a constant DC-link voltage. In comparison to the passive capacitor solution, the active capacitor is much smaller in size but can give a better DC-bus ripple performance. Therefore, the active capacitor has become an attractive solution for the single-phase converters.
The active capacitor for the traditional rectifier, where the DC side is directly connected to a load, has been intensively investigated in the past decade. However, there is limited research regarding the active capacitor for rectifiers with floating H-bridge power modules.
This work extends the application of the active capacitor to the Perturbation Injection Unit (PIU), which is a grid-connected single-phase rectifier with floating H-bridge power modules. The selection of a suitable active capacitor for the PIU is based on the evaluation of various active capacitor banks. Limits in existing control schemes, which prevent the extension of the active capacitor to the PIU, are thoroughly studied. An effective voltage-mode control scheme is then proposed for the selected active capacitor, which makes it an attractive solution for the PIU. Moreover, limits of the DC-bus impedance analysis using traditional assumptions in existing works are investigated, and an improved DC-bus impedance model is proposed. Based on the operation conditions of the PIU and the proposed impedance model, the active capacitor's components can be properly designed, and improved configurations in terms of the equivalent impedance can be analyzed. Simulation results, as well as the design and evaluation of the active capacitor, demonstrate great improvements in terms of volume and weight over the traditional passive capacitor bank.
|
Page generated in 0.0746 seconds