• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimized Composition of Parallel Components on a Linux Cluster

Al-Trad, Anas January 2012 (has links)
We develop a novel framework for optimized composition of explicitly parallel software components with different implementation variants given the problem size, data distribution scheme and processor group size on a Linux cluster. We consider two approaches (or two cases of the framework).  In the first approach, dispatch tables are built using measurement data obtained offline by executions for some (sample) points in the ranges of the context properties. Inter-/extrapolation is then used to do actual variant-selection for a given execution context at run-time. In the second approach, a cost function of each component variant is provided by the component writer for variant-selection. These cost functions can internally lookup measurements' tables built, either offline or at deployment time, for computation- and communication-specific primitives. In both approaches, the call to an explicitly parallel software component (with different implementation variants) is made via a dispatcher instead of calling a variant directly. As a case study, we apply both approaches on a parallel component for matrix multiplication with multiple implementation variants. We implemented our variants using Message Passing Interface (MPI). The results show the reduction in execution time for the optimally composed applications compared to applications with hard-coded composition. In addition, the results show the comparison of estimated and measured times for each variant using different data distributions, processor group and problem sizes.

Page generated in 0.1389 seconds