• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accelerated, Collaborative & Extended BlobTree Modelling / Accelerated, Collaborative and Extended BlobTree Modelling

Grasberger, Herbert 23 April 2015 (has links)
BlobTree modelling has been used in several solid modelling packages to rapidly prototype models by making use of boolean and sketch-based modelling. Using these two techniques, a user can quickly create complex models as combinations of simple primitives and sketched objects. Because the BlobTree is based on continuous field-values, it offers a lot of possibilities to create and control smooth transitions between surfaces, something more complicated in other modelling approaches. In addition, the data required to describe a BlobTree is very compact. Despite these advantages, the BlobTree has not yet been integrated into state of the art industrial workflows to create models. This thesis identifies some shortcomings of the BlobTree, presents potential solutions to those problems and demonstrates an application that makes use of the BlobTree's compact representation. A main criticism is that the evaluation of a large BlobTree can be quite expensive, and, therefore, many applications are limited in the complexity of models that can be created interactively. This work presents an alternative way of traversing a BlobTree that lowers the time to calculate field-values by at least an order of magnitude. As a result, the limit of model complexity is raised for interactive modelling applications. In some domains, certain models need more than one designer or engineer to be created. Often, several iterations of a model are shared between multiple participants until it is finalized. Because the description of a BlobTree is very compact, it can be synchronized efficiently in a collaborative modelling environment. This work presents CollabBlob, an approach to collaborative modelling based on the BlobTree. CollabBlob is lock-free, and provides interactive feedback for all the participants, which helps with a fast iteration in the modelling process. In order to extend the range of models that can be created within CollabBlob, two areas of BlobTree modelling are improved in the context of this thesis. CAD modelling often makes use of a feature called filleting to add additional surface features, which could be caused by a manufacturing process. Filleting in general creates smooth transitions between surfaces, something that the BlobTree can do with less mathematical complexity than approaches needed in Constructive Solid Geometry (CSG), in the case of fillets between primitives. However, little research has been done on the construction of fillets between surfaces of a single BlobTree primitive. This work outlines Angle-Based Filleting and the Surface Fillet Curve, two solutions to improve the specification of fillets in the BlobTree. Sketch-based implicit modelling generates 3D shapes from 2D sketches by sampling the drawn shape and using the samples to create the implicit field via variational interpolation. Additional samples inside and outside the sketched shape are needed to generate a field compatible with BlobTree modelling and state of the art approaches use offset curves of the sketch to generate these samples. The approach presented in this work reduces the number of sample points, thus accelerating the interpolation time and improving the resulting implicit field. / Graduate / 0984 / herbert.grasberger@gmail.com
2

3D Regional Geological Modelling in Structurally Complex Environments: Gaining Geological Insight for the Northern Labrador Trough

Montsion, Rebecca January 2017 (has links)
3D geological modelling is becoming an effective tool for communication and development of geological understanding. This is due to increased computer performance and availability of improved geological modelling software. 3D geological modelling technology has reached the stage where it can be implemented in regionally extensive and geologically complex settings, with the ability to achieve geological insight beyond what could otherwise have been gained through 2D investigations alone. Insight includes better constrained fault and horizon topologies, refined fold geometries, improved understanding of tectonic processes, and characterization of deformational events. By integrating field observations, aeromagnetic maps, and 3D modelling techniques in the northern Labrador Trough, a regionally extensive and structurally complex geological environment, regional faults geometries and topological relationships were refined. Additionally, a new fault, the Ujaralialuk Fault, and two shear zones were interpreted. During modelling, several challenges were identified, including higher computational costs for regionally extensive models, sparse 3D constraints, algorithmic limitations related to complex geometries, and the large investment of time and effort required to produce a single model solution. A benefit of this investigation is that new insight was also gained for a greenfields region which may assist future exploration efforts. Developing 3D models in challenging environments allows for better definition of future workflow requirements, algorithm enhancements, and knowledge integration. These are needed to achieve a geologically reasonable modelling standard and gain insight for poorly constrained geological settings.

Page generated in 0.0878 seconds