• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diseño y construcción de un dispositivo extrusor de probetas para estudios de concretos aptos para la impresión 3D

Salazar Ibáñez, César Ignacio January 2018 (has links)
Ingeniero Civil Mecánico / La tecnología de impresión 3D en los últimos años ha tomado un notable impulso, abarcando un amplio espectro de rubros. En particular, esta memoria se concentra en la aplicación de esta tecnología en el área de la construcción, específicamente en la impresión 3D por extrusión de hormigón. Debido a la complejidad inherente en la tecnología, esta memoria se adscribe a la iniciativa Beauchef Proyecta de financiar proyectos multidisciplinarios innovadores y desafiantes. Particularmente este proyecto comprende la inclusión de alumnos de Ingeniería Civil y Computación. Este proyecto comprende el diseño y construcción de un prototipo de impresora 3D de hormigón, con el fin de realizar las probetas requeridas para el estudio y ensayos de concretos aptos para la impresión 3D. Se decidió realizar un prototipo para preparación de probetas, debido a que el estudio de las propiedades de los concretos aptos para impresión 3D a mayor escala se encuentra aún en desarrollo. La impresora 3D diseñada, bautizada Hefesto 3D, corresponde a un modelo cuyo desplazamiento es del tipo cartesiano, el cual posee un extrusor para concreto en su cabezal principal, que está compuesto por un tornillo de Arquímedes. Esta configuración fue seleccionada por su facilidad de construcción y robustez requerida para la deposición del concreto. La impresora tiene un volumen útil de 800x800x600mm con el cual se pueden preparar distintas figuras de probetas para el estudio de concreto idóneos para impresión 3D. Como prototipo se logró un diseño que cumple con el requerimiento funcional planteado inicialmente, se realizaron algunas dos pruebas de impresión 3D de concreto. Estas pruebas determinaron que la funcionalidad de la impresora se logra, sin embargo se encontraron varios resultados para la optimización y mejoras de la impresora 3D, discutidos en este reporte. Se realizan pruebas de funcionamiento con una sola fórmula de concreto. Finalmente, cabe señalar que esta impresora es sólo un punto de partida para una serie de proyectos de investigación tanto en la disciplina civil, mecánica y computación. Desde el área civil, se pueden investigar una serie de parámetros del concreto. En la disciplina mecánica, investigar mejoras de diseño, componentes, materiales y creación de nuevos equipos de apoyo a la impresora 3D, como el bombeo del material.
2

Diseño de una máquina recicladora orientada a la producción de filamentos de plástico ABS para la impresión 3D en la PUCP

Porras Solorzano, Jean Peare 14 November 2018 (has links)
La presente tesis es planteada con el objetivo de diseñar una máquina automática compacta que permita reciclar plástico ABS, proveniente de las piezas funcionales en desuso de los laboratorios de la PUCP, y convertirlo en filamentos para impresión 3D. Se determinó que el diseño del sistema mecatrónico contará con tres estaciones interconectadas que realizan un proceso específico: triturar, extruir y enrollar el filamento de ABS. Este diseño permite que la maquina pueda realizar cada proceso independiente, con lo cual se obtiene mínimamente 0.5 kg de filamento ABS para impresión 3D de distintos diámetros comerciales de forma continua. Además, el diseño contempla la posibilidad del reciclaje de otros tipos de plástico con propiedades mecánicas y físicas similares al ABS. Así, se abordan los cálculos de diseño mecánico, los análisis de resistencia de distintos materiales mediante simulaciones computacionales, la selección de componentes, la propuesta del control del sistema, y los planos de ensamble y despiece para su fabricación. De esta manera, se obtiene un estimado del costo de diseño y fabricación para un ejemplar de aproximadamente S/33,000.00. / Tesis
3

Diseño mecatrónico de un sistema de calefacción cerrado y deshumedecedor de materiales de ingeniería para impresoras 3D de escritorio de código libre

Toyama Higa, Pedro Mitsuo 03 May 2023 (has links)
El presente trabajo, de final de carrera, tiene como objetivo principal el diseño de un sistema mecatrónico capaz de brindar a las impresoras 3D de escritorio de código libre la capacidad de poder imprimir materiales como el nylon, ABS, ASA, entre otros clasificados como materiales de ingeniería. Actualmente, solo las impresoras industriales son capaces de imprimir estos materiales, debido a que controlan el medio circundante en el área de impresión y la humedad relativa del filamento 3D. Estas máquinas tienen un costo elevado en comparación con las de código libre. Se llegó a un diseño que complementa a una impresora 3D de código libre, el cual incluye un control de temperatura y de humedad en la cabina principal y del filamento 3D, con el cual una impresora 3D de escritorio y código libre puede imprimir materiales de ingeniería. Este diseño mecatrónico se validó por medio de simulaciones estructurales y un prototipo funcional a escala. Además, se demostró que es viable su implementación como un producto comercial.
4

Diseño de una máquina recicladora orientada a la producción de filamentos de plástico ABS para la impresión 3D en la PUCP

Porras Solorzano, Jean Peare 14 November 2018 (has links)
La presente tesis es planteada con el objetivo de diseñar una máquina automática compacta que permita reciclar plástico ABS, proveniente de las piezas funcionales en desuso de los laboratorios de la PUCP, y convertirlo en filamentos para impresión 3D. Se determinó que el diseño del sistema mecatrónico contará con tres estaciones interconectadas que realizan un proceso específico: triturar, extruir y enrollar el filamento de ABS. Este diseño permite que la maquina pueda realizar cada proceso independiente, con lo cual se obtiene mínimamente 0.5 kg de filamento ABS para impresión 3D de distintos diámetros comerciales de forma continua. Además, el diseño contempla la posibilidad del reciclaje de otros tipos de plástico con propiedades mecánicas y físicas similares al ABS. Así, se abordan los cálculos de diseño mecánico, los análisis de resistencia de distintos materiales mediante simulaciones computacionales, la selección de componentes, la propuesta del control del sistema, y los planos de ensamble y despiece para su fabricación. De esta manera, se obtiene un estimado del costo de diseño y fabricación para un ejemplar de aproximadamente S/33,000.00.
5

Evaluación de las propiedades de amortiguamiento de materiales fabricados por impresión 3D y reforzados con nanotubos y fibras de carbono

Tapia Cabrera, Jorge Eduardo 23 January 2020 (has links)
La versatilidad que la tecnología de modelamiento por deposición fundida (FDM por sus siglas en inglés) presenta para la fabricación de componentes y piezas, no solo para fines decorativos sino para fines industriales, representa una nueva plataforma tecnológica para el desarrollo de nuevos materiales. En pos de tal avance, esta tesis busca describir empíricamente las relaciones entre los parámetros de fabricación por FDM y las propiedades de amortiguamiento de materiales nóveles para fines industriales en reducción de vibraciones, movimiento o sonido. En esta investigación se utilizarán dos materiales reforzados en una matriz de acrilonitrilo butadieno estireno (ABS), el primero con refuerzos de nanotubos de carbono y segundo reforzado con fibras de carbono, de ahora en adelante “ABS + CNT” y “ABS + CF” respectivamente. La redacción de este estudio comienza con una revisión de la literatura acerca la impresión 3D. Asimismo, se realiza una introducción a la teoría del amortiguamiento utilizada en este estudio. Se introducen los conceptos de stick slip, fuerzas de excitación, análisis de datos mediante transformadas de Fourier, método 3dB ancho de banda para el cálculo del ratio de amortiguamiento, y una recopilación de diversas investigaciones realizadas a materiales reforzados con nanotubos y fibras de carbono. Finalmente, se exponen las hipótesis centrales de este estudio. El procedimiento experimental seguido en esta tesis contempló la impresión de las probetas en dos tipos de orientación: cruzada 45°-/45° y unidireccional, en tres niveles de porcentaje de relleno, 100 %, 80 % y 60 %, para cada material. La selección de estos parámetros de impresión se realizó de acuerdo a las mejores propiedades mecánicas obtenidas en investigaciones anteriores [1]. Luego, en el Laboratorio de Acústica de la sección de Física, se implementó un banco de ensayos de caracterización de amortiguamiento de material mediante método impacto. Finalmente, las probetas se caracterizaron mediante ensayos de tracción en el CITE Materiales PUCP. De acuerdo a los ensayos realizado se concluye que los refuerzos de nanotubos de carbono en la matriz de ABS aumentan las capacidades de amortiguamiento del material. Sin embargo, las propiedades de amortiguamiento son inferiores a las de otros materiales utilizados en la industria de impresión 3D. Con respecto a los parámetros de impresión, se muestra la predominancia de la orientación cruzada por sobre la orientación unidireccional en propiedades de amortiguamiento y se sugiere una correlación entre la reducción de la densidad y el aumento de las propiedades de amortiguamiento en los materiales ensayados. Finalmente, se dan detalles acerca del proceso de fabricación de las probetas además de un análisis de las propiedades mecánicas en función de la densidad y de la orientación.
6

Propuesta de una metodología experimental para el diseño de morteros cementicios para aplicación de construcción mediante manufactura aditiva

Baldoceda Perez, Jordan Jesus 10 October 2023 (has links)
Durante las últimas décadas, el escaso desarrollo tecnológico que ha experimentado la industria de la construcción ha dejado en evidencia la necesidad de una pronta actualización. Entre los más grandes déficits se puede mencionar la baja optimización de la gestión de tiempo, material, así como económico. Investigadores relacionados al área han encontrado en la Manufactura Aditiva (AM) una adecuada alternativa para introducir tecnología avanzada en el desarrollo de la construcción de edificaciones. De acuerdo con Agarwal et al. (2016), la manufactura aditiva aplicada a la construcción es una valiosa herramienta que conlleva a importantes mejoras en el ámbito económico y ambiental. Este novedoso proceso tecnológico se encarga de agilizar la construcción de viviendas a través de la automatización de sus procesos. Debido a la gran versatilidad de la AM, esta es capaz de colaborar con procesos como la metodología colaborativa de gestión de proyectos Building Information Modeling (BIM), Internet de las cosas (IoT) y softwares de mapeo digital de datos. El uso simultaneo de estas herramientas iniciaría la transición de la construcción hacia la industria 4.0, optimizando el costo, gestión de tiempo y uso de material durante la ejecución de proyectos. Por lo tanto, la presente investigación tiene como objetivo desarrollar mezclas de mortero que sean compatibles con el sistema de manufactura aditiva. Para ello se estudió a profundidad el estado del arte de la impresión 3D enfocada en la industria de la construcción. Luego, se realizó un resumen detallado de los sistemas de impresión 3D, procesos de impresión, matrices imprimibles, propiedades de los materiales y ensayos de caracterización aplicados a la manufactura aditiva de mortero. Basados en la revisión bibliográfica, se seleccionaron ensayos experimentales de veleta de corte, estabilidad cilíndrica, extrusión y de constructabilidad para evaluar las propiedades de la mezcla. En base a dichos ensayos se propusieron protocolos para las distintas etapas del desarrollo de morteros cementicios imprimibles. Posteriormente, se seleccionó la dosificación que supero satisfactoriamente todas las etapas y además presento mejor viabilidad económica. Finalmente, se validó la mezcla mediante la impresión de elementos con patrón de relleno complejo. Los resultados obtenidos muestran que la aplicación de la metodología de evaluación propuesta logró desarrollar eficientemente cuatro mezclas de mortero compatibles con la impresión 3D. Además, se demostró que el uso de la tecnología de manufactura aditiva optimiza el proceso constructivo y brinda mayor flexibilidad en el diseño de elementos no estructurales. / During the last decades, the scarce technological development experienced by the construction industry has made evident the necessity for an early update due to the short optimization of time and budget that the industry is currently undergoing. Researchers related to the area have found Additive Manufacturing (AM) as a suitable alternative to introduce the automated use of technology in the construction of structures. According to Agarwal et al. (2016), additive manufacturing applied to construction is a valuable tool that generates economic and environmental benefits. This modern technological process is responsible for the automation of housing construction. In addition, the versatility of AM allows it to be compatible with innovative processes such as collaborative project management methodology Building Information Modeling (BIM), the Internet of Things (IoT), and digital data mapping software. Therefore, Additive Manufacturing is the construction sector transition to Industry 4.0, directly optimizing project costs, the material used, and material loss during project execution. Therefore, the present research aims to develop mortar mixtures compatible with the additive manufacturing system. For this purpose, the state of the art of 3D concrete printing focused on the construction industry was studied. Then, a detailed summary of 3D printing systems, printing processes, printable matrices, material properties, and characterization tests of the additive manufacturing of mortar was made. Based on the literature review, experimental tests as shape stability, extrudability, buildability and flowability were carried out to evaluate the properties of the mixtures. Using these tests, protocols for obtaining printable cementitious mortars were proposed. Subsequently, the dosage that satisfactorily passed all the stages and was economically viable was selected. Finally, the mixture was validated by printing medium-scale elements. The results show that applying the proposed methodology could efficiently develop four mortar mixtures compatible with 3D printing. One was chosen to validate the dosage by printing a natural scale geometry with a complex fill pattern. It was demonstrated that this technology optimizes the construction process and provides greater flexibility in the design of non-structural elements.
7

Caracterización multidimensional de tintas de biomaterial para manufactura aditiva por extrusión de estructuras tridimensionales de interés biomédico

Cáceres Albán, José Luis Martín 20 October 2023 (has links)
El presente trabajo muestra la caracterización de tintas de biomaterial empleadas en un sistema de impresión 3D por extrusión y la determinación de su viabilidad de uso para la manufactura de estructuras tridimensionales de interés biomédico. El documento aborda la necesidad de contar con metodologías para analizar de manera objetiva la fidelidad de impresión en sistemas basados en extrusión debido a que existen definiciones no consensuadas en la comunidad científica y estándares no publicados en un campo de estudio en constante evolución. Se sigue una metodología propia para el desarrollo de constructos fabricados bajo el marco de tecnologías de bioimpresión, con énfasis en el preprocesamiento y procesamiento de tres tipos de constructos: vascular, orgánico y para ensayos in vitro. Se sintetizaron ocho tintas de biomaterial a partir de reactivos disponibles en un contexto académico, tales como: la sal sódica de carboximetilcelulosa, el alginato y el cloruro de calcio. Se realizaron ensayos de caracterización para evaluar propiedades de la materia prima como hinchamiento y viscosidad, así como propiedades directamente involucradas al proceso de impresión 3D como formación y homogeneidad de filamento, precisión de impresión e integridad de forma. Los resultados indican que la formulación compuesta por sal sódica de carboximetilcelulosa (20%), alginato (10%) y cloruro de calcio (2%) demuestra el mejor desempeño general en los ensayos de caracterización multidimensional, siendo viable para la impresión por extrusión de las estructuras de interés biomédico propuestas en el presente trabajo.
8

Aplicación de la enzima ureasa en la estabilización de suelos y la auto-reparación de matrices empleadas en impresión 3D

Rojas Morales, Omar Antonio Giovanni 07 February 2024 (has links)
Aún con los constantes avances en la industria de la construcción, existen puntos clave que continúan siendo relevantes en la toma de decisiones para el diseño y ejecución de un proyecto. Puntos como la selección de un suelo apropiado para cada tipo de proyecto. Ahora bien, uno de los principales impedimentos está relacionado a no poder obtenerse un suelo adecuado que permita garantizar la estabilidad y durabilidad que se requiere. Si a esta problemática le añadimos que, la constante demanda en infraestructura a nivel mundial exige a su vez un incremento en la demanda del hormigón, cuya producción contribuye en la emisión de gases de efecto invernadero y alternativas como la implementación de impresión 3D aplicada a la industria de la construcción introduce varios retos de ingeniería desde el punto de vista de los materiales. La búsqueda de una manera apropiada de estabilizar el suelo, así como poder generar la capacidad de auto-reparación en los elementos impresos, se traduce en una necesidad que requiere pronta atención. Esta tesis propone el desarrollo de una metodología para estabilizar el suelo y para auto-reparar matrices empleadas en impresión 3D catalizadas por la enzima ureasa. De los resultados adquiridos para la estabilización de suelos, la evaluación de durabilidad frente a la erosión por agua nos indicó que la mezcla de suelo modificado con CaCl2-urea con concentración equimolar de 1 M y solución enzimática de 5 U, presenta una pérdida de masa de sólo el 18.35 %, en comparación con la erosión completa de la muestra en el agua en el caso de la mezcla de suelo con agua. Por su parte, el ensayo de compresión indicó que el uso de una solución enzimática afectó negativamente a las propiedades mecánicas del material con un nivel de resistencia a la compresión inferior de 35.5 % con respecto al de las muestras no estabilizadas. Por otro lado, los resultados adquiridos luego del proceso de reparación para el caso de matrices de suelo muestran que los defectos intervenidos se pudieron rellenar casi por completo, aunque se evidencia la presencia de erosión debido a la inestabilidad de la propia matriz de suelo frente al contenido líquido propio de la solución enzimática. Lo cual no se evidencia en matrices cementicias, donde los defectos se repararon sin evidencia de erosión. Finalmente, el ensayo de compresión en las muestras auto-reparadas indicó que, el uso de una solución enzimática afectó negativamente a las propiedades mecánicas de matrices de suelo. Esto debido a la erosión mencionada con anterioridad al aplicarse la solución enzimática directamente. Por su parte, el uso de una solución enzimática logra mantener las propiedades mecánicas de matrices cementicias, donde se alcanza un valor idéntico en resistencia a la compresión con respecto al de las muestras intervenidas. / Even with the constant advances in the construction industry, there are crucial points that continue to be relevant in the decision-making process for the design and execution of a project. Points such as the selection of an appropriate soil for each type of project. However, one of the main impediments is related to not being able to obtain adequate soil to guarantee the required stability and durability. If we add to this problem that the constant demand for infrastructure worldwide requires an increase in the demand for concrete, whose production contributes to the emission of greenhouse gases, and alternatives such as the implementation of 3D printing applied to the construction industry introduce several engineering challenges from the point of view of materials. The search for an appropriate way to stabilize the soil, as well as to be able to generate the capacity of self-healing in the printed elements, translates into a need that requires early attention. This thesis proposes the development of a methodology to stabilize soil and to self-repair matrices used in 3D printing catalyzed by the enzyme urease. From the results acquired for soil stabilization, the evaluation of durability against water erosion indicated that the soil mixture modified with CaCl2-urea with equimolar concentration of 1 M and 5 U enzyme solution, presents a mass loss of only 18.35 %. In comparison with the complete erosion of the sample in water in the case of the soil-water mixture. The compression test indicated that the use of an enzyme solution negatively affected the mechanical properties of the material with a level of compressive strength 35.5 % lower than that of the non-stabilized samples. On the other hand, the results obtained after the repair process for the case of soil matrices show that the intervened defects could be almost filled, although the presence of erosion is evidenced due to the instability of the soil matrix itself against the liquid content of the enzymatic solution. This is not evident in cementitious matrices, where the defects were repaired without evidence of erosion. Finally, the compression test on the self-repaired samples indicated that the use of an enzyme solution negatively affected the mechanical properties of soil matrices. This was due to the previously mentioned erosion when the enzyme solution was applied directly. However, the use of an enzymatic solution did not show a significant increase in the mechanical properties of cementitious matrices, where an identical value in compressive strength was achieved with respect to that of the treated samples.
9

3D printing for construction: development of earth-based matrices stabilized with chitosan biopolymer and reinforced with natural sisal fibers

Zavaleta de la Cruz, Diana Carolina 05 February 2024 (has links)
In the last few years, 3D printing with robots or automated equipment has emerged as a technology with significant potential in the construction sector. This approach offers several advantages, including reduced construction time and costs, design flexibility, and the ability to use various materials. Earth, as a building material, has gained attention in 3D printing due to its eco-friendliness compared to cement. However, it remains relatively underexplored in this industry. Unfortunately, earth is known for its poor mechanical strength, water durability, and susceptibility to swelling, especially due to its clayey composition. These factors can lead to cracking during the drying process. To address these challenges, researchers have been investigating different materials for 3D printing, aiming to minimize the ecological footprint by using biodegradable materials or repurposing waste for stabilization. Recent studies have explored the use of biopolymers such as chitosan, alginate, and potato starch to enhance the mechanical and durability properties of earth-based mixtures. Additionally, the incorporation of natural fibers like sisal or jute has proven effective in reducing cracking in earthen structures. Considering the above, it would be advantageous for the construction industry to employ 3D printing to produce earth-based matrices stabilized with biopolymers and reinforced with natural fibers. Designing such matrices requires an approach that accounts for the yield stress suitable for 3D printing, ensuring the mixture possesses key printability characteristics such as extrudability, workability, and buildability. The evaluation of these properties in the fresh state, during hardening, and in the hardened state necessitates conducting various tests recommended by international standards and researchers. In order to outline a procedure for obtaining a printable matrix that meets the desired mechanical strength and water durability, a methodology is proposed for developing earth-based matrices stabilized with chitosan and reinforced with sisal fibers. This methodology consists of three stages. The first stage involves conducting physical, mechanical, chemical, and mineralogical analyses of the raw materials: soil, chitosan, and sisal fibers. The second stage encompasses an optimized procedure to obtain potentially printable earth-based matrices through laboratory testing using a pastry bag. Finally, the validated earth matrix from the previous stage undergoes 3D printing to create different specimens, allowing for the evaluation of extrudability, pumpability, buildability, and mechanical strength of the mixture. The printing process utilizes a motion-controlled gantry robot with three degrees of freedom in a printing area with a volume of 1.0 m³ and employs a progressive delivery system.
10

Additive manufacturing applied to the construction industry - Development of earthen-based and cement-based matrices for additive construction

Silva Mondragon, Guido Leonardo 12 November 2022 (has links)
The application of additive manufacturing technologies for construction has evidenced potential economic, social, and environmental benefits compared to conventional casting procedures. 3D printing for construction is a disruptive technology with the potential for rapid and massive applications making it a feasible alternative for social housing, temporary shelters after disasters, and, recently, extraterrestrial habitats. In this line, this thesis presents the development of earthen-based and cement-based matrices with fresh properties, hardening, and hardened-state properties compatible with this new construction process. First, a medium-scale 3D printing prototype was designed and validated for additive construction applications. The revision of state of the art helps us to define the key properties to design printable matrices: flowability, extrudability, open time, and buildability. Based on these key properties, together with a mechanical evaluation and shrinkage cracking monitoring, printable earthen-based and cement-based matrices were developed. First, the printable capabilities of ecofriendly earthen-based matrices which use potato starch as a natural stabilizer for raw soil mortars aim to obtain 3D printed filaments with adequate fresh and hardenedstates properties. The results indicate that printable earthen-based matrices reinforced with 1 % of sisal fibers by weight of soil and stabilized with aqueous starch gels with concentrations up to 5 % (w/w) showed improved workability and minor cracking and can be used for 3D printing. Then, the thesis presents a methodology based on a set of low-cost experimental tests for the development of cement-based matrices suitable for layer-by-layer deposition. The results of the systematic experimental campaign indicate that yield strength obtained by shear vane tests is a good reference value for proportioning extrudable, pumpable, and buildable concretes. However, special attention has to be given to the binder/fine aggregate weight ratio as low binder contents can lead to clogging of the pumping system. The current research shows four formulations with good printing capabilities obtained after shear vane tests, filament printing tests, and stacking tests. Finally, two medium-scale section walls have been additively manufactured using the optimum concrete validating the proposed methodology.

Page generated in 0.0874 seconds