• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of reconstituted translation system for peptidomimetic mRNA display synthesis

Stojanovic, Vesna 05 1900 (has links)
The generation of high affinity, selective, and in vivo-stable peptide-based drugs is currently a major challenge in the field of drug development. Technologies exist that permit the generation of a vast diversity of chemical and conformational space and an example of such a technology is mRNA display, which utilizes protein translation machinery to produce a wide array of polypeptides starting from a combinatorial library of mRNA templates. The intention of this research was to bridge mRNA display to a reconstituted translation system using protein synthesis using recombinant elements (PURE) system for a new drug discovery platform. We hypothesized that it is possible to generate mRNA-peptidomimetic fusions using reconstituted translation system and chemo-enzymatically charged tRNAs, to incorporate unnatural amino acids into mRNA-peptidomimetic fusions. Upon demonstating that the reconstituted system was functional, we have synthesized hexapeptide fusion products containing four alanine residues and one biocytin residue. Fusions were assayed using urea-PAGE in the presence of streptavidin which allowed for unambiguous evaluation of the full length fusion fraction. It was determined that overall more fusion product was generated with template that codes for biocytin early in the coding sequence, but that the percent of biocytin-containing product stays similar regardless of the biocytin place in the coding region. We have also found that the change in template untranslated region length does not improve incorporation of biocytin in dipeptide fusions within the tested range. Finally, after first unsuccessful attempts to make sarcosine hexapeptide fusions, we investigated the effect of magnesium ion concentration on the translation reaction. As a result of four series of experiments performed involving both alanine and sarcosine fusion synthesis in parallel, we concluded that an increase in magnesium concentration from 5 mM to 20 mM coincided with enabling of the reconstituted system in making hexapeptide fusions with sarcosine in a significantly high number of cases. This research work arises from the need to enable a new drug discovery tool that will allow both synthesis and affinity maturation of peptide-based compounds. It represents our pioneering efforts to develop a new technology and ultimately help bring to existence compounds of significant therapeutic value.
2

The development of reconstituted translation system for peptidomimetic mRNA display synthesis

Stojanovic, Vesna 05 1900 (has links)
The generation of high affinity, selective, and in vivo-stable peptide-based drugs is currently a major challenge in the field of drug development. Technologies exist that permit the generation of a vast diversity of chemical and conformational space and an example of such a technology is mRNA display, which utilizes protein translation machinery to produce a wide array of polypeptides starting from a combinatorial library of mRNA templates. The intention of this research was to bridge mRNA display to a reconstituted translation system using protein synthesis using recombinant elements (PURE) system for a new drug discovery platform. We hypothesized that it is possible to generate mRNA-peptidomimetic fusions using reconstituted translation system and chemo-enzymatically charged tRNAs, to incorporate unnatural amino acids into mRNA-peptidomimetic fusions. Upon demonstating that the reconstituted system was functional, we have synthesized hexapeptide fusion products containing four alanine residues and one biocytin residue. Fusions were assayed using urea-PAGE in the presence of streptavidin which allowed for unambiguous evaluation of the full length fusion fraction. It was determined that overall more fusion product was generated with template that codes for biocytin early in the coding sequence, but that the percent of biocytin-containing product stays similar regardless of the biocytin place in the coding region. We have also found that the change in template untranslated region length does not improve incorporation of biocytin in dipeptide fusions within the tested range. Finally, after first unsuccessful attempts to make sarcosine hexapeptide fusions, we investigated the effect of magnesium ion concentration on the translation reaction. As a result of four series of experiments performed involving both alanine and sarcosine fusion synthesis in parallel, we concluded that an increase in magnesium concentration from 5 mM to 20 mM coincided with enabling of the reconstituted system in making hexapeptide fusions with sarcosine in a significantly high number of cases. This research work arises from the need to enable a new drug discovery tool that will allow both synthesis and affinity maturation of peptide-based compounds. It represents our pioneering efforts to develop a new technology and ultimately help bring to existence compounds of significant therapeutic value.
3

The development of reconstituted translation system for peptidomimetic mRNA display synthesis

Stojanovic, Vesna 05 1900 (has links)
The generation of high affinity, selective, and in vivo-stable peptide-based drugs is currently a major challenge in the field of drug development. Technologies exist that permit the generation of a vast diversity of chemical and conformational space and an example of such a technology is mRNA display, which utilizes protein translation machinery to produce a wide array of polypeptides starting from a combinatorial library of mRNA templates. The intention of this research was to bridge mRNA display to a reconstituted translation system using protein synthesis using recombinant elements (PURE) system for a new drug discovery platform. We hypothesized that it is possible to generate mRNA-peptidomimetic fusions using reconstituted translation system and chemo-enzymatically charged tRNAs, to incorporate unnatural amino acids into mRNA-peptidomimetic fusions. Upon demonstating that the reconstituted system was functional, we have synthesized hexapeptide fusion products containing four alanine residues and one biocytin residue. Fusions were assayed using urea-PAGE in the presence of streptavidin which allowed for unambiguous evaluation of the full length fusion fraction. It was determined that overall more fusion product was generated with template that codes for biocytin early in the coding sequence, but that the percent of biocytin-containing product stays similar regardless of the biocytin place in the coding region. We have also found that the change in template untranslated region length does not improve incorporation of biocytin in dipeptide fusions within the tested range. Finally, after first unsuccessful attempts to make sarcosine hexapeptide fusions, we investigated the effect of magnesium ion concentration on the translation reaction. As a result of four series of experiments performed involving both alanine and sarcosine fusion synthesis in parallel, we concluded that an increase in magnesium concentration from 5 mM to 20 mM coincided with enabling of the reconstituted system in making hexapeptide fusions with sarcosine in a significantly high number of cases. This research work arises from the need to enable a new drug discovery tool that will allow both synthesis and affinity maturation of peptide-based compounds. It represents our pioneering efforts to develop a new technology and ultimately help bring to existence compounds of significant therapeutic value. / Pharmaceutical Sciences, Faculty of / Graduate
4

Ribosomal Synthesis of N-methylated peptides

Ahadi, Sara 28 July 2010 (has links)
Natural peptide products isolated from various organisms often contain N-methylated backbones. Such a modification of backbone of the peptide changes its conformational rigidity. This modification improves the biological properties of the peptide, such as improved target affinity, proteolytic stability or membrane permeability. Therefore synthesis of N-methylated peptide libraries is valuable in screening for drug-like peptides suitable for therapeutic uses. Protein synthesis using recombinant elements (PURE) and Flexizyme were used in order to reassign specific codons to N-methyl amino acids. mRNA-dependent translation system enable us to make our desired peptides with N-methyl amino acids. This technology is a convenient tool for the construction of N-methyl peptide libraries. Using Flexizyme in order to make library of N-methyl peptides requires significant amount of tRNA. Therefore developing a simple and rapid method for purification of specific tRNA from fully modified E. coli total tRNA would be advantageous Here we reported a new technique in purification of individual tRNAs using fluorous affinity tag. From total tRNA, desired tRNA could be charged with related amino acid and tagged with fluorous molecule through reductive amination.
5

Construction of a T7 phage random peptide library by combining seamless cloning with in vitro translation / seamless cloningとin vitro translationの組み合わせによるT7ファージランダムペプチドライブラリーの構築

Higashi, Katsuaki 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(人間健康科学) / 甲第25215号 / 人健博第121号 / 新制||人健||8(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 高桑 徹也, 教授 澤本 伸克, 教授 萩原 正敏 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
6

Optimization of in vitro transcription/translation conditions for in vitro compartmentalization studies and synthesis of 4-fluorohistidine

Ring, Christine 01 January 2017 (has links)
Genetic code expansion allows the incorporation of non-canonical amino acids with a variety of new functional groups: fluorescent amino acids,1-3 azides,4-6 alkynes,5-10 and photocrosslinkers.4,11,12 This incorporation requires the evolution of new tRNA/aminoacyl tRNA sythetase pairs. Traditionally screenings of novel tRNA/aminoacyl tRNA synthetase pairs have been done in vivo. While these in vivo screenings have proven robust, they are limited in multiple ways: non-canonical amino acids (ncAAs) must be nontoxic and bioavailable. Furthermore, library size is limited by transformation efficiency. Lastly, in vivo screenings require substantial amounts of the target ncAA, which is often not available in large masses. In vitro screenings bypass these limitations: toxicity and bioavailibilty are no longer concerns. Library size can be expanded by several orders of magnitude as we are no longer limited by transformation efficiency. Lastly, because in vitro transcription/translation reactions are routinely conducted on the μL scale, ncAA usage can be minimized. We set out to use in vitro compartmentalization to further expand the code. In an in vitro compartmentalization screening, the water droplets in a water-in-oil emulsion serve as separate reaction chambers in which individual library members are transcribed and translated. Here we report optimization of S30 transcription/translation reactions. Optimizations include cell lysis method, reaction temperature, template amount, and T7 RNA polymerase amounts. Yields remained low and we transistioned into the use of PURExpress. Fluorohistidines are isosteric with histidine, but not isoelectronic.13 This change in environment results in a reduction of pKa. We set out to synthesize 4-fluorohistidine to use as a pH probe in several target proteins. A synthesis of 4-fluorohistidine was published in 1973.14,15 We were able to improve upon this synthesis by reducing cost and improving yield of a key step in the reaction. Next, small peptides with polyhistidine tags were translated in vitro using our 4-fluorohistidine. We are calling this polyhistidine tag incorporating 4-fluorohistidine our “hexafluorohistag.” Because of the reduced pKa of the 4-fluorohistidine, the hexafluorohistag showed affinity to Nickel-NTA resin even at reduced pH. This allowed for the purification of hexafluorohistagged peptides in the presence of traditional polyhistidine-tagged peptides.
7

Mutational analysis of the csgD mRNA leader: search for a mode of regulation

Jonsäll, Linnea January 2013 (has links)
The CsgD protein is the master regulator of a pathway leading to the formation of curli, in essence regulating the switch between a motile and a sessile lifestyle for bacteria. The 5’-UTR region of the csgD mRNA is a hotspot for multiple regulatory small RNAs (sRNA) involved in a complex regulatory network. Even though it is previously known how the interaction takes place it is unknown how sRNA binding affects the translational activity. In order to suggest a mode of regulation a mutational assay was performed by making changes in the csgD 5’-UTR and investigate what the translational effects were. Mutations in different regions are shown to affect the translation levels in various ways.
8

SPLIT-PROTEIN REASSEMBLY METHODS FOR THE DETECTION AND INTERROGATION OF BIOMOLECULAR INTERACTIONS AND MODULATORS THEREOF

Porter, Jason Robert January 2009 (has links)
The interactions between protein-protein, protein-nucleic acid, and protein-small molecules are central to biological processes and are key for the design of new therapeutics. Rapid and easy to implement methodologies are needed that enable the interrogation of these interactions in a complex cellular context. Towards this goal, I have utilized the concept of split-protein reassembly, also called protein complementation, for the creation of a variety of sensor architectures that enable the interrogation of protein-nucleic acid, protein-protein, and protein-small molecule interactions. Utilizing the enzymatic split-reporter β-lactamase and existing zinc finger design strategies we applied our recently developed technology termed SEquence-Enabled Reassembly (SEER) towards the creation of a sensor capable of the specific detection of the CryIA transgene. Additionally, the split β-lactamase reporter was utilized for the sitespecific determination of DNA methylation at cytosine residues that is involved in epigenetic regulation. This method, dubbed mCpG-SEER, enabled the direct detection of femtomole levels of dsDNA methylation in sequence specific manner. In a separate endeavor, we have developed and optimized the first cell-free split-reporter systems for GFP, split β-lactamase, and firefly luciferase for the successful dsDNA-dependent reassembly of the various reporters. Our cell free in vitro translation systems eliminates previous bottlenecks encountered in split-reporter technologies such as laborious transfection/cell culture or protein purification. Capitalizing on the ease of use and speed afforded by this new technology we describe the sensitive detection of protein-protein, protein-nucleic acid, and protein-small molecule interactions and inhibitors thereof. In a related area, we have applied this rapid cell-free split-firefly luciferase assay to the specific interrogation of a large class of helix-receptor protein-protein interactions. We have built a panel consisting of the clinically relevant Bcl-2 family of proteins, hDM2, hDM4, and p53 and interrogated the specificity of helix-receptor interactions as well as the specificity of peptide and small-molecule inhibitors of these interactions. Finally, we describe the further applications of our cell-free technology to the development of a large number of general split-firefly luciferase sensors for the detection of ssRNA sequences, the detection of native proteins, the evaluation of protease activity, and interrogation of enzyme-inhibitor interactions. The new methodologies provided in this study provides a general and enabling methodology for the rapid interrogation of a wide variety of biomolecular interactions and their antagonists without the limitations imposed by current in vitro and in vivo approaches.
9

Développement d’un nouveau système hybride de traduction in vitro et étude du rôle traductionnel de la protéine NS1 de l’Influenza A / Viral subversion of the host translational machinery occurred by Influenza A virus with a new in vitro approach

Panthu, Baptiste 05 September 2013 (has links)
Le virus de l'Influenza A est l'agent étiologique des épidémies de grippe saisonnière. Ce virus a développé des stratégies complexes pour exprimer ses protéines dans les cellules hôtes dès 4 heures après infection. Au départ de cette étude, je me suis intéressé aux événements intervenant dans l'initiation de la traduction des ARN messagers viraux. L'infection par le virus de l'Influenza A perturbe profondément la physiologie cellulaire, et notamment les processus d'expression des gènes au niveau des étapes de transcription, maturation et export des ARN messagers. De ce fait, j'ai donc commencé par développer les outils permettant de m'affranchir de ces événements nucléaires pour pouvoir me focaliser sur les mécanismes viraux spécifiques de l'initiation de la traduction. Ainsi, j'ai conçu et élaboré un nouveau système de traduction in vitro qui dérive du lysat de réticulocytes de lapin dans lequel sont ajoutés des ribosomes isolés de cellules en culture. Ce lysat, dit hybride, présente l'avantage d'être très efficace pour la production de protéines tout en conservant les caractéristiques traductionnelles des cellules dont les ribosomes dérivent. Le second volet de mes travaux porte sur le rôle de la protéine virale NS1 au niveau de la traduction cellulaire et virale. En combinant des infections virales avec des expériences in vitro et ex-vivo, par transfection d'ARN, je montre que NS1 est capable de stimuler la synthèse protéique des ARNm cellulaires et viraux. Par de la mutagénèse dirigée sur cette protéine de 230 acides aminés, j'observe que la région amino-terminale de la protéine (aa 1-81) est responsable de cet effet activateur. Des mutations ponctuelles au sein de ce domaine révèlent l'importance de deux résidus aminés (R38 et K41) dans la stimulation. En résumé, ces travaux ont permis de mettre au point un nouveau système d'expression in vitro et de mieux comprendre comment est contrôlée la synthèse des protéines virales du virus Influenza A / Influenza A belongs to the orthomyxoviridae family and is the causal agent for the seasonal and epidemic Influenza infections. This virus has developed complex strategies to utilize the host cell protein apparatus for viral protein expression. In this study, I have focused on the events involved during the initiation of translation of viral mRNAs. Influenza A infection profoundly disrupts host cell gene expression mainly at the level of transcription, maturation and mRNA export. As such, it is quite difficult to investigate directly translational control of Influenza. Therefore, I have started my project by elaborating experimental tools that can be used for this purpose. This was done by designing and developing a new in vitro translation system derived from the rabbit reticulocyte lysate which is supplemented with exogeneous ribosomes that have been isolated from different cell types. This lysate, called hybrid system, offers the advantage to be very effective in the production of proteins while maintaining the translational characteristics of the cells from which the ribosomes originate. The second part of my work focusses on the role of the viral NS1 protein on cellular and viral translation. By using an experimental approach based on viral infections together with in vitro and ex vivo translational assays, I could show that NS1 is able to stimulate both viral and cellular protein synthesis. Then, the introduction of deletion mutants of this 230 amino acids protein revealed that its amino-terminal domain (aa 1-81) was responsible for this stimulatory effect (aa 1-81). Finally, the introduction of point mutations in this region showed the importance of two conserved positively charged residues (R38 and K41) for stimulation. In summary, these studies have yielded a new in vitro translation expression system and have shed light on how viral proteins synthesis is regulated by Influenza A virus
10

Incorporation de protéines membranaires produites par un système d'expression protéique acellulaire dans des bicouches lipidiques planes / Incorporation of membrane proteins produced by a cell-free expression system into planar lipid lilayers

Coutable, Angelique 14 March 2014 (has links)
Les protéines membranaires intégrales jouent un rôle essentiel dans le maintien de l’intégrité cellulaire (transports d’ions et de nutriments, transduction de signal, interaction cellule-cellule). Afin de les étudier, ces protéines doivent être produites in vitro. La production classique de ces protéines membranaires intégrales dans des microorganismes présente de nombreuses difficultés liées à leur structure complexe mais aussi à des problèmes de toxicité, empêchant la production de nombre d’entre elles. En outre, pour être produites efficacement, ces protéines ont besoin d’un environnement amphiphile. Dans cette thèse, afin de pallier à ces difficultés, nous avons d’une part utilisé un système d’expression protéique acellulaire, non affecté par la physiologie des cellules vivantes. En outre, nous avons choisi de les intégrer dans des bicouches lipidiques planes reconstituées artificiellement. Dans une première partie, nous avons mis au point l’intégration d’une protéine membranaire intégrale formant un pore, l’alpha hémolysine, dans une bicouche lipidique supportée. Certaines protéines nécessitant un espace plus important de part etd’autre de la membrane, nous avons, dans une seconde partie, développé une bicouche lipidique espacée et ancrée par fusion de liposomes sur des surfaces d’or. Nous démontrons qu’il est possible d’y incorporer des protéines membranaires de type Aquaporine Z sous certaines conditions. Dans une troisième partie, dédiée à la formation de membranes biomimétiques utilisant des molécules lipidiques provenant d’Escherichia coli, nous montrons que la modification de la composition membranaire ne semble pas avoir d’incidence sur l’incorporation de protéines. Enfin, dans une dernière partie, nous avons réalisé des premiers essais d’insertion de protéines membranaires, de type alpha hémolysine, dans des bicouches suspendues afin de montrer que ces protéines produites par le système d’expression acellulaire sont fonctionnelles. / Integral membrane proteins play an essential role in the cell integrity preservation (transport of nutrients and ions, signal transduction, cell-cell interaction). In order to study these proteins, they have to be produced in vitro. Classical production of integral membrane proteins in microorganisms present many difficulties associated with their complex structure and also toxicity problems, preventing production of many of them. Moreover, to be efficiently produced, these proteins require an amphiphilic environment. In order to overcome these difficulties, we used a cell-free protein expression system, unaffected by the physiology ofliving cells. In addition, we chose to integrate them into artificial planar lipid bilayers. In a first part, we have developed the integration of an integral membrane protein forming a pore, the alpha hemolysin, in a supported lipid bilayer. Some proteins require more space on each side of the membrane, therefore in a second part, we have developed a tethered lipid bilayer membrane by liposome fusion on gold surfaces. We demonstrate that it is possible to incorporate membrane protein Aquaporin Z under certain conditions. The third part is dedicated to the formation of biomimetic membranes using lipid molecules from Escherichiacoli, we show that the membrane composition do not affect the protein incorporation. Finally, we have tested alpha hemolysin membrane proteins insertion in suspended lipid bilayers membranes to show that these proteins produced by the cell-free expression system are functional.

Page generated in 0.1367 seconds