• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonal Variation of Mud Floc Sizes in Two Small Freshwater Streams

Delay, Lailee Alena 05 June 2024 (has links)
Flocculation is not only an important part of sediment dynamics within coastal marine waters, but is also a factor of sediment transport within small freshwater streams in Blacksburg, Virginia. The goal of this project was to develop a relationship between floc sizes and stream characteristics (temperature, salinity, chlorophyll-a, organic content, TSS, pH) and to compare how that relationship varies seasonally and spatially across two streams in the same watershed with a similar drainage area but different land uses within these areas. Microscopic images of flocs and water samples were taken within two local streams every two to four weeks throughout the span of one year. The images were analyzed to obtain the floc sizes and the water samples were tested in a lab for various stream properties. The compiled data from the entire year were analyzed to determine if there was a seasonal relationship between floc sizes and the various properties of the water. The process was also repeated at multiple locations along the entire length of both of the streams once in the summer and once in the winter to see if there was a spatial relationship within a single stream. Our study found that significant rainfall events tend to have the greatest effect on floc size in the small headwater streams. However, many of the individual variables alone do not correlate strongly with floc size and a combination of variables may be the best way to analyze the floc size. / Master of Science / Flocculation is the process of single particles coming together to form larger aggregated particles called "flocs". This project focuses on flocculation of sediment within local streams and how the sizes of these flocs may vary throughout the year. The rate of flocculation and the size of these flocs can have a large effect on the movement of sediment within freshwater streams. Images of flocs and water properties such as water temperature, salinity, and pH, were analyzed every two to four weeks throughout the span of a year to determine if there was a relationship between floc size and any of the measured water properties. While a relationship between rainfall and floc size was noticed, it is apparent that multiple variables should be factored into the analysis to get the most accurate results.
2

The Development of an In-situ Mud Floc Microscope Imaging Device and In-situ Floc Observations from the Lowermost Mississippi River

Osborn, Ryan Todd 20 May 2021 (has links)
Mud makes up a large fraction of sediment transported within rivers to the coasts. Predicting where mud will settle is complicated by the cohesive nature of silts and clays, which can combine to form larger aggregates known as flocs. The size and density, and consequently, the settling velocity, of flocs is highly dynamic and depends on factors such as turbulence levels within the flow and biogeochemical components of the water and sediment. To better predict where mud will deposit, more observations of flocs while in their natural environment is required to better understand the controls on when, where, and to what degree mud is flocculated. However, the need for more field observations is complicated by the dynamic and fragile nature of flocs. This necessitates the need for developing in-situ observation methods to ensure that measured floc sizes are representative of their in-situ size, and not a result of sampling methods. In this thesis, a new instrument for in-situ observation of flocs is presented. In addition, two methods using the data collected from the instrument allow the user to: (1) identify sand within the particle data using a machine learning algorithm, and (2) estimate the mass suspended sediment concentration of the mud and sand fractions of suspended sediment independently. Results from using the instrument in the lowermost Mississippi River reveal differences in floc sizes over the water column, and by season. In addition, a unique observation of flocs in the presence of a salt wedge is presented. Overall, the instrument provided the first known observations of flocs within the Mississippi River, and provides a start to better understanding controls on floc sizes within the fluvial environment. / Master of Science / Flowing water within large rivers carries sediments such as sand and mud to the coasts. Some of the larger sediment carried by rivers can fall to the riverbed if the river does not have enough energy to carry it in the flow. The remaining sediment can be carried to the coasts where it will fall to the bed, providing the material necessary for estuaries or deltas to form and grow. Understanding when and where sediment falls to the bed within rivers, estuaries, and deltas, allows scientists and engineers to predict how these landforms will change over time to better manage them under future climate conditions. Predicting where mud will fall to the bed is particularly difficult because mud has the ability to stick together to form larger aggregates. These aggregates, known as mud flocs, are constantly changing in size depending on the energy in the river and water conditions. As the mud flocs change in size, the speed at which they fall to the bed changes. As such, observing mud flocs while they are in their natural environment is required to understand the conditions under which they form and change in size. This thesis presents a new instrument that can be used to collect images of mud flocs while they are in their natural environment. Results from using the instrument to observe mud flocs in the lowermost Mississippi River are then presented. This new instrument, and observations of mud flocs made with it, provides new insight into mud floc size within the lowermost Mississippi River.

Page generated in 0.0999 seconds