Spelling suggestions: "subject:"insitu crystallization"" "subject:"ensitu crystallization""
1 |
Solvent influences on Metastable Polymorph Lifetimes:Real-time interconversions using Energy Dispersive X-Ray DiffractometryBlagden, Nicholas, Booth, S.W., De Matos, Luciana L., Williams, Adrian C. January 2007 (has links)
No / Solvent influences on the crystallization of polymorph and hydrate forms of the nootropic drug piracetam (2-oxo-pyrrolidineacetamide) were investigated from water, methanol, 2-propanol, isobutanol, and nitromethane. Crystal growth profiles of piracetam polymorphs were constructed using time-resolved diffraction snapshots collected for each solvent system. Measurements were performed by in situ energy dispersive X-ray diffraction recorded in Station 16.4 at the synchrotron radiation source (SRS) at Daresbury Laboratory, CCLRC UK. Crystallizations from methanol, 2-propanol, isobutanol, and nitromethane progressed in a similar fashion with the initial formation of form I which then converted relatively quickly to form II with form III being generated upon further cooling. However, considerable differences were observed for the polymorphs lifetime and both the rate and temperature of conversion using the different solvents. The thermodynamically unstable form I was kinetically favored in isobutanol and nitromethane where traces of this polymorph were observed below 10°C. In contrast, the transformation of form II and subsequent growth of form III were inhibited in 2-propanol and nitromethane solutions. Aqueous solutions produced hydrate forms of piracetam which are different from the reported monohydrate; this crystallization evolved through successive generation of transient structures which transformed upon exchange of intramolecular water between the liquid and crystalline phases
|
2 |
Gas separation of steam and hydrogen mixtures using an α-alumina-Alumina supported NaA membrane / by S. MoodleyMoodley, Shawn January 2007 (has links)
Thesis (M. Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2008.
|
3 |
Gas separation of steam and hydrogen mixtures using an α-alumina-Alumina supported NaA membrane / by S. MoodleyMoodley, Shawn January 2007 (has links)
In this study, the feasibility of a NaA zeolite membrane for the gas phase separation of steam and hydrogen mixtures was determined. The Fischer-Tropsch (FT) process, which produces high value fuels and chemicals from coal and natural gas, can be greatly improved upon by the selective removal of water from the FT reactor product stream. According to the FT reaction kinetics, the rate of reaction increases with the partial pressure of hydrogen but is adversely affected the presence of water in the reactor product stream. Chemisorbed water on the surface of the metal catalysts also enhances deactivation due to sintering and fouling. The use of a zeolite membrane reactor is well equipped to serve the purpose of in-situ water removal as it can facilitate the separation of chemical components from one another in the presence of catalytic reactions. The LTA type zeolite membrane NaA or zeolite 4A, in particular, is well suited for the separation of polar (H2O) from non-polar (H2) molecules because of its high hydrophilicity. NaA has also been identified as an excellent candidate for selective water removal applications due its high adsorption affinity and capacity for water.
The NaA membrane used in this study was manufactured by means of the in-situ crystallisation method where the growth of crystals on the inside surface of a centrifugally casted a-alumina support was favoured. Scanning electron microscopy (SEM) analyses performed on the membrane after a double hydrothermal synthesis indicated that the surface topology was rough and that the zeolite crystals formed were not uniform in size. Overall, the membrane thickness varied between 6.5 and 8.0 flm. An evaluation of the membrane quality was made possible through permeation experiments involving SF6 and Hz. The calculated Hz/SF6 permselectivity in this study was found to be 9.78, which despite being higher than the Knudsen diffusion selectivity of 8.54, confirmed the presence of intercrystalline defects or non-zeolitic pores in the membrane. Experiments concerning pure component and binary mixture permeation of steam and hydrogen through the supported NaA membrane were conducted over a temperature range of 115°C to 160 °c for binary hydrogen/steam mixtures, 25°C to 160°C for pure hydrogen and 130°C to 170°C for pure steam. For the permeation of pure component hydrogen, a local maximum in its permeance having a value of 224 x 10'°8 mol.m,z.s'!.Pa'! was reached at a system pressure and temperature of 6.875 bar and 75°C respectively. For the permeation of pure component steam
through NaA, the effects of capillary condensation in the pores and defects of the zeolite membrane resulted in a decrease in steam permeance as a function of absolute pressure for temperatures lower than 160 °c. Once the effects of capillary condensation had receded, maxima in the steam permeances as a function of temperature corresponding to values of 70 x 10,08, 65 X 10,08 and 75 x 10,08 mol.m•2.s'I.Pa'l were found for the 182.5, 197.5 and 222.5 kPa isobars respectively. These observations collaborated well with the description of surface diffusion with permeation taking place in the Langmuir (strong adsorption) regime.
Permeation experiments through NaA as function of temperature were conducted for a 90 mol% steam -10 mol% hydrogen (90-10) binary mixture as well as for a 60-40 mixture of these two. At low temperatures the permeation of hydrogen was completely suppressed by the condensed steam resulting in an almost perfect separation. The Kelvin equation was used to estimate the pore size of the defects which was found to range between 1.86 and 2.45 nm. The temperature range over which these defects in the membrane were assumed to become unblocked (i.e. assuming when the first breakthrough of hydrogen occurred), were determined to be between 140 to 148 °c and between 128 to 130 °c for the 90-10 and 60-40 mixtures respectively. The mixture selectivities (towards water) between 115 °c and 130 °c were found to be immensely high (much greater than 1000) for both the 90-10 and 60-40 mixtures, while the ideal selectivities were calculated to be less than lover the same temperature range. At 140 °c, the selectivity towards water for the 9010 mixture was still greater than 1000; however for the 60-40 mixture at this temperature, an inversion of selectivity towards H2 had already taken place. The breakthrough in H2 permeance occurs at a much lower temperature when the feed mixture contains a lower concentration of water. Since the partial pressure of steam will be reduced, larger pores will become unblocked at lower temperatures according to the Kelvin equation. / Thesis (M. Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2008.
|
4 |
Gas separation of steam and hydrogen mixtures using an α-alumina-Alumina supported NaA membrane / by S. MoodleyMoodley, Shawn January 2007 (has links)
In this study, the feasibility of a NaA zeolite membrane for the gas phase separation of steam and hydrogen mixtures was determined. The Fischer-Tropsch (FT) process, which produces high value fuels and chemicals from coal and natural gas, can be greatly improved upon by the selective removal of water from the FT reactor product stream. According to the FT reaction kinetics, the rate of reaction increases with the partial pressure of hydrogen but is adversely affected the presence of water in the reactor product stream. Chemisorbed water on the surface of the metal catalysts also enhances deactivation due to sintering and fouling. The use of a zeolite membrane reactor is well equipped to serve the purpose of in-situ water removal as it can facilitate the separation of chemical components from one another in the presence of catalytic reactions. The LTA type zeolite membrane NaA or zeolite 4A, in particular, is well suited for the separation of polar (H2O) from non-polar (H2) molecules because of its high hydrophilicity. NaA has also been identified as an excellent candidate for selective water removal applications due its high adsorption affinity and capacity for water.
The NaA membrane used in this study was manufactured by means of the in-situ crystallisation method where the growth of crystals on the inside surface of a centrifugally casted a-alumina support was favoured. Scanning electron microscopy (SEM) analyses performed on the membrane after a double hydrothermal synthesis indicated that the surface topology was rough and that the zeolite crystals formed were not uniform in size. Overall, the membrane thickness varied between 6.5 and 8.0 flm. An evaluation of the membrane quality was made possible through permeation experiments involving SF6 and Hz. The calculated Hz/SF6 permselectivity in this study was found to be 9.78, which despite being higher than the Knudsen diffusion selectivity of 8.54, confirmed the presence of intercrystalline defects or non-zeolitic pores in the membrane. Experiments concerning pure component and binary mixture permeation of steam and hydrogen through the supported NaA membrane were conducted over a temperature range of 115°C to 160 °c for binary hydrogen/steam mixtures, 25°C to 160°C for pure hydrogen and 130°C to 170°C for pure steam. For the permeation of pure component hydrogen, a local maximum in its permeance having a value of 224 x 10'°8 mol.m,z.s'!.Pa'! was reached at a system pressure and temperature of 6.875 bar and 75°C respectively. For the permeation of pure component steam
through NaA, the effects of capillary condensation in the pores and defects of the zeolite membrane resulted in a decrease in steam permeance as a function of absolute pressure for temperatures lower than 160 °c. Once the effects of capillary condensation had receded, maxima in the steam permeances as a function of temperature corresponding to values of 70 x 10,08, 65 X 10,08 and 75 x 10,08 mol.m•2.s'I.Pa'l were found for the 182.5, 197.5 and 222.5 kPa isobars respectively. These observations collaborated well with the description of surface diffusion with permeation taking place in the Langmuir (strong adsorption) regime.
Permeation experiments through NaA as function of temperature were conducted for a 90 mol% steam -10 mol% hydrogen (90-10) binary mixture as well as for a 60-40 mixture of these two. At low temperatures the permeation of hydrogen was completely suppressed by the condensed steam resulting in an almost perfect separation. The Kelvin equation was used to estimate the pore size of the defects which was found to range between 1.86 and 2.45 nm. The temperature range over which these defects in the membrane were assumed to become unblocked (i.e. assuming when the first breakthrough of hydrogen occurred), were determined to be between 140 to 148 °c and between 128 to 130 °c for the 90-10 and 60-40 mixtures respectively. The mixture selectivities (towards water) between 115 °c and 130 °c were found to be immensely high (much greater than 1000) for both the 90-10 and 60-40 mixtures, while the ideal selectivities were calculated to be less than lover the same temperature range. At 140 °c, the selectivity towards water for the 9010 mixture was still greater than 1000; however for the 60-40 mixture at this temperature, an inversion of selectivity towards H2 had already taken place. The breakthrough in H2 permeance occurs at a much lower temperature when the feed mixture contains a lower concentration of water. Since the partial pressure of steam will be reduced, larger pores will become unblocked at lower temperatures according to the Kelvin equation. / Thesis (M. Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2008.
|
5 |
Magma chamber dynamics in the peralkaline magmas of the Kakortokite Series, South GreenlandHunt, Emma J. January 2015 (has links)
Understanding crystallisation in magma chambers is a key challenge for igneous petrology. It is particularly important to understand the origins of layering in peralkaline rocks, e.g. the kakortokite (nepheline syenite), Ilímaussaq Complex, S. Greenland, as these are commonly associated with high value multi-element economic deposits. The kakortokite is a spectacular example of macrorhythmic (>5 m) layering. Each unit consists of three layers comprising arfvedsonite-rich (sodic-amphibole) black kakortokite at the base, grading into eudialyte-rich (sodic-zirconosilicate) red kakortokite, then alkali feldspar- and nepheline-rich white kakortokite. Each unit is numbered -19 to +17 relative to a characteristic well-developed horizon (Unit 0), however there is little consensus on their development. This project applies a multidisciplinary approach through field observations combined with petrography, crystal size distributions (CSDs), mineral and whole rock chemistries on Units 0, -8 to -11 and a phonolite/micro-nephelinolite (“hybrid”) sequence that crosscuts the layered kakortokite. Textures and compositions are laterally consistent across outcrop and indicators of current activity are rare. CSDs indicate in situ crystallisation with gravitational settling as a minor process. Chemical discontinuities occur across unit boundaries. The layering developed through large-scale processes under exceptionally quiescent conditions. The discontinuities reflect open-system behaviour; units were formed by an influx of volatile-rich magma that initiated crystallisation in a bottom layer. Nucleation was initially suppressed by high volatile element concentrations, which decreased to allow for crystallisation of arfvedsonite, followed by eudialyte, then alkali feldspar and nepheline to form each tripartite unit. The chemistry of the hybrid indicates mixing between a primitive (sub-alkaline) magma and kakortokite. Thus injections of magmas of varying compositions occurred, indicating a complex plumbing system below current exposure. The lessons learned at Ilímaussaq, which is extremely well exposed and preserved, are relevant to understanding magma chamber dynamics in the more common instances of pervasively altered peralkaline rocks.
|
Page generated in 0.1171 seconds