• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid State Structure-Reactivity Studies on Bixbyites, Fluorites and Perovskites Belonging to the Vanadate, Titanate and Cerate Families

Shafi, Shahid 21 September 2012 (has links)
This thesis primarily focuses on the systematic understanding of structure – reactivity relationships in two representative systems: bixbyite and related structures as well as indium doped CeO2. Topotactic reaction routes have gained significant attention over the past two decades due to their potential to access kinetically controlled metastable materials. This has contributed substantially to the understanding of solid state reaction pathways and provided first insights into mechanisms. Contrary to the widely used ex-situ methods, in – situ techniques including powder x-ray diffraction and thermogravimetric – differential thermal analysis have been employed extensively throughout this work in order to follow the reaction pathways in real time. Detailed analysis of the AVO3 (A = In, Sc) bixbyite reactivity under oxidative conditions has been carried out and a variety of novel metastable oxygen defect phases have been identified and characterized. The novel metastable materials have oxygen deficient fluorite structures and consequently are potential ion conductors. Structural aspects of the topotactic vs. reconstructive transformations are illustrated with this model system. The structure – reactivity study of AVO3 phases was extended to AVO3 perovskite family. Based on the research methodologies and results from AVO3 bixbyite reactivity studies a generalized mechanistic oxidation pathway has been established with a non-vanadium phase, ScTiO3 bixbyite. However, there is stark contrast in terms of structural stability and features beyond this stability limit during AVO3 and ScTiO3 bixbyite reaction pathways. A series of complex reaction sequences including phase separation and phase transitions were identified during the investigation of ScTiO3 reactivity. The two-step formation pathway for the fluorite – type oxide ion conductor Ce1-xInxO2-δ (0 ≤ x ≤ 0.3) is being reported. The formation of the BaCe1-xInxO3-δ perovskites and the subsequent CO2-capture reaction with the formation of Ce1-xInxO2-δ (0 ≤ x ≤ 0.3) has been investigated in detail. The two-step formation pathway is contrasted with the unsuccessful direct method. The stability and the extent of In – doping for the CeO2 fluorite phases that can be achieved through this CO2 – capture method are reported. The necessity and strategies for the selection of appropriate intermediate precursors for the preparation of doped CeO2 are also reported.
2

Reversible hydrogenation of the Zintl phases BaGe and BaSn studied by in situ diffraction

Auer, Henry, Weber, Sebastian, Hansen, Thomas Christian, Többens, Daniel Maria, Kohlmann, Holger 28 February 2019 (has links)
Hydrogenation products of the Zintl phases AeTt (Ae = alkaline earth; Tt = tetrel) exhibit hydride anions on interstitial sites as well as hydrogen covalently bound to Tt which leads to a reversible hydrogenation at mild conditions. In situ thermal analysis, synchrotron and neutron powder diffraction under hydrogen (deuterium for neutrons) pressure was applied to BaTt (Tt=Ge, Sn). BaTtHy (1<y<1.67, γ-phases) were formed at 5 MPa hydrogen pressure and elevated temperatures (400–450 K). Further heating (500–550 K) leads to a hydrogen release forming the new phases β-BaGeH0.5 (Pnma, a=1319.5(2) pm, b=421.46(2) pm, c=991.54(7) pm) and α-BaSnH0.19 (Cmcm, a=522.72(6) pm, b=1293.6(2) pm, c=463.97(6) pm). Upon cooling the hydrogen rich phases are reformed. Thermal decomposition of γ-BaGeHy under vacuum leads to β-BaGeH0.5 and α-BaGeH0.13 [Cmcm, a=503.09(3) pm, b=1221.5(2) pm, c=427.38(4) pm]. At 500 K the reversible reaction α-BaGeH0.23 (vacuum)⇄β-BaGeH0.5 (0.2 MPa deuterium pressure) is fast and was observed with 10 s time resolution by in situ neutron diffraction. The phases α-BaTtHy show a pronounced phase width (at least 0.09<y<0.36). β-BaGeH0.5 and the γ-phases appear to be line phases. The hydrogen poor (α- and β-) phases show a partial occupation of Ba4 tetrahedra by hydride anions leading to a partial oxidation of polyanions and shortening of Tt–Tt bonds.
3

Size Matters: New Zintl Phase Hydrides of REGa (RE = Y, La, Tm) and RESi (RE = Y, Er, Tm) with Large and Small Cations

Werwein, Anton, Hansen, Thomas C., Kohlmann, Holger 06 April 2023 (has links)
Many Zintl phases exhibiting a CrB type structure form hydrides. Systematic studies of AeTtHx (Ae = Ca, Sr, Ba; Tt = Si, Ge, Sn), LnTtHx (Ln = La, Nd; Tt = Si, Ge, Sn), and LnGaHx (Ln = Nd, Gd) showed the vast structural diversity of these systems. Hydrogenation reactions on REGa (RE = Y, La, Tm) and RESi (RE = Y, Er, Tm) were performed in steel autoclaves under hydrogen pressure up to 5 MPa and temperatures up to 773 K. The products were analyzed by X-ray and neutron powder diffraction. RESi (RE = Y, Er, Tm) form hydrides in the C-LaGeD type. LaGaD1.66 is isostructural to NdGaD1.66 and shows similar electronic features. Ga-D distances (1.987(13) Å and 2.396(9) Å) are considerably longer than in polyanionic hydrides and not indicative of covalent bonding. In TmGaD0.93(2) with a distorted CrB type structure deuterium atoms exclusively occupy tetrahedral voids. Theoretical calculations on density functional theory (DFT) level confirm experimental results and suggest metallic properties for the hydrides.
4

Diffraction Studies Of Deformation In Shape Memory Alloys And Selected Engineering Components

Rathod, Chandrasen 01 January 2005 (has links)
Deformation phenomena in shape memory alloys involve stress-, temperature-induced phase transformations and crystallographic variant conversion or reorientation, equivalent to a twinning operation. In near equiatomic NiTi, Ti rich compositions can exist near room temperature as a monoclinic B19' martensitic phase, which when deformed undergoes twinning resulting in strains as large as 8%. Upon heating, the martensite transforms to a cubic B2 austenitic phase, thereby recovering the strain and exhibiting the shape memory effect. Ni rich compositions on the other hand can exist near room temperature in the austenitic phase and undergo a reversible martensitic transformation on application of stress. Associated with this reversible martensitic transformation are macroscopic strains, again as large as 8%, which are also recovered and resulting in superelasticity. This work primarily focuses on neutron diffraction measurements during loading at the Los Alamos Neutron Science Center at Los Alamos National Laboratory. Three phenomena were investigated: First, the phenomena of hysteresis reduction and increase in linearity with increasing plastic deformation in superelastic NiTi. There is usually a hysteresis associated with the forward and reverse transformations in superelastic NiTi which translates to a hysteresis in the stress-strain curve during loading and unloading. This hysteresis is reduced in cold-worked NiTi and the macroscopic stress-strain response is more linear. This work reports on measurements during loading and unloading in plastically deformed (up to 11%) and cycled NiTi. Second, the tension-compression stress-strain asymmetry in martensitic NiTi. This work reports on measurements during tensile and compressive loading of polycrystalline shape-memory martensitic NiTi with no starting texture. Third, a heterogeneous stress-induced phase transformation in superelastic NiTi. Measurements were performed on a NiTi disc specimen loaded laterally in compression and associated with a macroscopically heterogeneous stress state. For the case of superelastic NiTi, the experiments related the macroscopic stress-strain behavior (from an extensometer or an analytical approach) with the texture, phase volume fraction and strain evolution (from neutron diffraction spectra). For the case of shape memory NiTi, the macroscopic connection was made with the texture and strain evolution due to twinning and elastic deformation in martensitic NiTi. In all cases, this work provided for the first time insight into atomic-scale phenomena such as mismatch accommodation and martensite variant selection. The aforementioned technique of neutron diffraction for mechanical characterization was also extended to engineering components and focused mainly on the determination of residual strains. Two samples were investigated and presented in this work; first, a welded INCONEL 718 NASA space shuttle flow liner was studied at 135 K and second, Ti-6Al-4V turbine blade components were investigated for Siemens Westinghouse Power Corporation. Lastly, also reported in this dissertation is a refinement of the methodology established in the author's masters thesis at UCF that used synchrotron x-ray diffraction during loading to study superelastic NiTi. The Los Alamos Neutron Science Center is a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36. The work reported here was made possible by grants to UCF from NASA (NAG3-2751), NSF CAREER (DMR-0239512), Siemens Westinghouse Power Corporation and the Space Research Initiative.

Page generated in 0.1457 seconds