• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Možnosti vnějšího dochlazování tlakové nádoby při havárii s roztavením aktivní zóny / Possibilities of the external cooling of a pressure vessel in case of the accident with active zone melting

Hanuš, Jan January 2014 (has links)
The accident at the Fukushima Daiichi nuclear power plant has shown us that there may be situations where the applied technology will not be able to successfully cool the reactor core. These situations may occur when more elements such as supply of energy to power the pumps and diesel generators are destroyed for example by tsunami or earthquake, or other not expected natural disasters. The inability of the residual heat removal leads to the melting of core, relocation to the bottom of reactor pressure vessel (RPV) and failure of RPV. Result of this accident may be containment failure and leakage of fission products into the environment. One way to prevent this scenario may be a passive system called IVR (In-Vessel Retention) by using external cooling of RPV that retains melted core in. This system counts with flooding of RPV´s shaft by water. After natural circulation of water provides the heat transfers from the wall of RPV. The applicability of IVR for VVER 1000 reactors is still in the course of research. However it´s already clear that the submersion of RPV shaft by water will not sufficient. Other elements as suitable insulation and RPV coating which provides a more intensive heat transfer from the walls of RPV will be needed.
2

Návrh zařízení pro havarijní chlazení tlakové nádoby reaktoru / The design of components for emergency cooling of reactor pressure vessel

Katzer, Milan January 2013 (has links)
My thesis deals with the design of an experimental emergency cooling device of the reactor pressure vessel (RPV). It consists of two parts, the theoretical one and practical one. Different molten corium cooling methods in terms of their efficiency and comparison are introduced in the theoretical part. The design of an experimental emergency cooling device, which incorporates a model channel past the reactor pressure vessel , is presented in the practical part. The cooling device consists of a model channel past the reactor pressure vessel, condensator, which takes away the heat generated by the reactor pressure vessel and the pump of a secondary loop. Next, thermal and hydraulic calculations are given in this section. The conclusion is devoted to the evaluation of particular cooling technologies and their comparison in terms of nuclear and technical safety.
3

Uma nova técnica para contenção de acidentes em reatores nucleares de água pressurizada. / A novel technique for in-vessel retention in a pressurized water reactor.

Santos, Wilton Fogaça da Silva 06 March 2018 (has links)
Durante um acidente em uma usina nuclear, a integridade do vaso pressurizado deve ser assegurada. Em resposta a um possível derretimento do combustível nuclear, a atual geração de usinas possui um sistema para a injeção de água potável na cavidade do vaso pressurizado com intuito de resfriar sua parede, prevenindo danos a sua estrutura e evitando o vazamento de material radioativo. Esse estudo considerou o uso de água marinha como refrigerante para inundar a cavidade do vaso pressurizado combinado com a fixação de um estrutura porosa em forma de grade em sua parede externa como meio de aprimorar a margem de segurança durante a contenção de acidentes. Experimentos de longa duração para a ebulição em piscina de água marinha artificial foram conduzidos em uma superfície circular de cobre plana com 30 mm de diâmetro. Foi encontrado um fluxo de calor crítico de 1; 6 MW/m2 sob pressão atmosférica. Esse valor é significantemente maior que aquele obtido (1; 0 MW/m2) nas mesmas condições experimentais. Foi verificado que os depósitos de sais marinhos podem aumentar a molhabilidade e a capilaridade da superfície de teste, aprimorando assim o fluxo crítico. Combinando a água marinha e a fixação da estrutura porosa sobre a superfície de teste, verificou-se um melhora no coeficiente de transmissão de calor e no fluxo de calor crítico de até 110 % (2; 1 MW/m2), quando comparado a água destilada na superfície limpa, sem a instalação da estrutura. Após os experimentos, foi identificado que muitos dos poros presentes nas superfícies da estrutura porosa encontravam-se bloqueados devido ao aglutinamento de sais marinhos. Isso levou a conclusão que o aumento no valor do fluxo crítico observado para a água marinha artificial ocorreu devido, principalmente, a separação das fases líquida e gasosa do fluido na região próxima a superfície de teste, efeito proporcionado pela forma de grade da estrutura porosa, e ao aumento da molhabilidade e capilaridade da superfície devido a formação dos depósitos marinhos. / During a severe nuclear power plant accident, the integrity of the reactor pressure vessel must be assured. In response to a possible fuel meltdown, operators of the current generation of nuclear power plants are likely to inject water into the reactor pressure vessel to cool down the reactor vessel wall, preserving its integrity and avoiding leakage of radioactive material. This study considers the use of seawater to flood a reactor pressure vessel combined with the attachment of a honeycomb porous plate (HPP) on the vessel outer wall as a way to improve the safety margins for in-vessel retention of fuel. In long-duration experiments, saturated pool boiling of artificial seawater was performed with an upward-facing plain copper heated surface 30 mm in diameter. The resulting value for critical heat flux (CHF) was 1; 6 MW/m2 at atmospheric pressure, a value significantly higher than the CHF obtained when the working fluid was distilled water (1; 0 MW/m2). It was verified that sea-salt deposits could greatly improve surface wettability and capillarity, enhancing the CHF. The combination of artificial seawater and an HPP attached to the heated surface improved the boiling heat transfer coefficient and increased the CHF up to 110% (2; 1 MW/m2) as compared to distilled water on a bare surface. After the artificial seawater experiments, most of the wall micropores of the HPP were clogged because of sea-salt aggregation on the HPP top and bottom surfaces. Thus, the CHF enhancement observed in this case was attributed mainly to the separation of liquid and vapor phases provided by the HPP channel structure and improvement of surface wettability and capillarity by sea-salt deposition.
4

Modelling of in-vessel retention after relocation of corium into the lower plenum

Sehgal, Bal Raj, Altstadt, Eberhard, Willschuetz, Hans-Georg, Weiss, Frank-Peter 31 March 2010 (has links) (PDF)
Considering the unlikely core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Worldwide several experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work. At the Institute of Safety Research of the FZR a finite element model has been de-veloped simulating the thermal processes and the viscoplastic behaviour of the ves-sel wall. An advanced model for creep and material damage has been established and has been validated using experimental data. The thermal and the mechanical calculations are sequentially and recursively coupled. The model is capable of evalu-ating fracture time and fracture position of a vessel with an internally heated melt pool. The model was applied to pre- and post test calculations for the FOREVER test se-ries representing the lower head RPV of a PWR in the geometrical scale of 1:10. These experiments were performed at the Royal Institute of Technology in Stock-holm. The results of the calculations can be summarised as follows: # The creeping process is caused by the simultaneous presence of high tem-perature (>600 °C) and pressure (>1 MPa) # The hot focus region is the most endangered zone exhibiting the highest creep strain rates. # The exact level of temperature and pressure has an influence on the vessel failure time but not on the failure position # The failure time can be predicted with an uncertainty of 20 to 25%. This uncer-tainty is caused by the large scatter and the high temperature sensitivity of the viscoplastic properties of the RPV steel. # Contrary to the hot focus region, the lower centre of the vessel head exhibits a higher strength because of the lower temperatures in this zone. The lower part moves down without significant deformation. Therefore it can be assumed, that the vessel failure can be retarded or prevented by supporting this range. # The development of a gap between melt crust and vessel wall could not be proofed. First calculations for a PWR geometry were performed to work out differences and commonalities between prototypic scenarios and scaled experiments. The results of the FOREVER-experiments cannot be transferred directly to PWR geometry. The geometrical, mechanical and thermal relations cannot be scaled in the same way. Because of the significantly higher temperature level, a partial ablation of the vessel wall has to be to expected in the PWR scenario, which is not the case in the FOREVER tests. But nevertheless the FOREVER tests are the only integral in-vessel retention experiments up to now and they led to a number of important insights about the behaviour of a vessel under the loading of a melt pool and pressure.
5

Uma nova técnica para contenção de acidentes em reatores nucleares de água pressurizada. / A novel technique for in-vessel retention in a pressurized water reactor.

Wilton Fogaça da Silva Santos 06 March 2018 (has links)
Durante um acidente em uma usina nuclear, a integridade do vaso pressurizado deve ser assegurada. Em resposta a um possível derretimento do combustível nuclear, a atual geração de usinas possui um sistema para a injeção de água potável na cavidade do vaso pressurizado com intuito de resfriar sua parede, prevenindo danos a sua estrutura e evitando o vazamento de material radioativo. Esse estudo considerou o uso de água marinha como refrigerante para inundar a cavidade do vaso pressurizado combinado com a fixação de um estrutura porosa em forma de grade em sua parede externa como meio de aprimorar a margem de segurança durante a contenção de acidentes. Experimentos de longa duração para a ebulição em piscina de água marinha artificial foram conduzidos em uma superfície circular de cobre plana com 30 mm de diâmetro. Foi encontrado um fluxo de calor crítico de 1; 6 MW/m2 sob pressão atmosférica. Esse valor é significantemente maior que aquele obtido (1; 0 MW/m2) nas mesmas condições experimentais. Foi verificado que os depósitos de sais marinhos podem aumentar a molhabilidade e a capilaridade da superfície de teste, aprimorando assim o fluxo crítico. Combinando a água marinha e a fixação da estrutura porosa sobre a superfície de teste, verificou-se um melhora no coeficiente de transmissão de calor e no fluxo de calor crítico de até 110 % (2; 1 MW/m2), quando comparado a água destilada na superfície limpa, sem a instalação da estrutura. Após os experimentos, foi identificado que muitos dos poros presentes nas superfícies da estrutura porosa encontravam-se bloqueados devido ao aglutinamento de sais marinhos. Isso levou a conclusão que o aumento no valor do fluxo crítico observado para a água marinha artificial ocorreu devido, principalmente, a separação das fases líquida e gasosa do fluido na região próxima a superfície de teste, efeito proporcionado pela forma de grade da estrutura porosa, e ao aumento da molhabilidade e capilaridade da superfície devido a formação dos depósitos marinhos. / During a severe nuclear power plant accident, the integrity of the reactor pressure vessel must be assured. In response to a possible fuel meltdown, operators of the current generation of nuclear power plants are likely to inject water into the reactor pressure vessel to cool down the reactor vessel wall, preserving its integrity and avoiding leakage of radioactive material. This study considers the use of seawater to flood a reactor pressure vessel combined with the attachment of a honeycomb porous plate (HPP) on the vessel outer wall as a way to improve the safety margins for in-vessel retention of fuel. In long-duration experiments, saturated pool boiling of artificial seawater was performed with an upward-facing plain copper heated surface 30 mm in diameter. The resulting value for critical heat flux (CHF) was 1; 6 MW/m2 at atmospheric pressure, a value significantly higher than the CHF obtained when the working fluid was distilled water (1; 0 MW/m2). It was verified that sea-salt deposits could greatly improve surface wettability and capillarity, enhancing the CHF. The combination of artificial seawater and an HPP attached to the heated surface improved the boiling heat transfer coefficient and increased the CHF up to 110% (2; 1 MW/m2) as compared to distilled water on a bare surface. After the artificial seawater experiments, most of the wall micropores of the HPP were clogged because of sea-salt aggregation on the HPP top and bottom surfaces. Thus, the CHF enhancement observed in this case was attributed mainly to the separation of liquid and vapor phases provided by the HPP channel structure and improvement of surface wettability and capillarity by sea-salt deposition.
6

Modelling of in-vessel retention after relocation of corium into the lower plenum

Sehgal, Bal Raj, Altstadt, Eberhard, Willschuetz, Hans-Georg, Weiss, Frank-Peter January 2005 (has links)
Considering the unlikely core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Worldwide several experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work. At the Institute of Safety Research of the FZR a finite element model has been de-veloped simulating the thermal processes and the viscoplastic behaviour of the ves-sel wall. An advanced model for creep and material damage has been established and has been validated using experimental data. The thermal and the mechanical calculations are sequentially and recursively coupled. The model is capable of evalu-ating fracture time and fracture position of a vessel with an internally heated melt pool. The model was applied to pre- and post test calculations for the FOREVER test se-ries representing the lower head RPV of a PWR in the geometrical scale of 1:10. These experiments were performed at the Royal Institute of Technology in Stock-holm. The results of the calculations can be summarised as follows: # The creeping process is caused by the simultaneous presence of high tem-perature (>600 °C) and pressure (>1 MPa) # The hot focus region is the most endangered zone exhibiting the highest creep strain rates. # The exact level of temperature and pressure has an influence on the vessel failure time but not on the failure position # The failure time can be predicted with an uncertainty of 20 to 25%. This uncer-tainty is caused by the large scatter and the high temperature sensitivity of the viscoplastic properties of the RPV steel. # Contrary to the hot focus region, the lower centre of the vessel head exhibits a higher strength because of the lower temperatures in this zone. The lower part moves down without significant deformation. Therefore it can be assumed, that the vessel failure can be retarded or prevented by supporting this range. # The development of a gap between melt crust and vessel wall could not be proofed. First calculations for a PWR geometry were performed to work out differences and commonalities between prototypic scenarios and scaled experiments. The results of the FOREVER-experiments cannot be transferred directly to PWR geometry. The geometrical, mechanical and thermal relations cannot be scaled in the same way. Because of the significantly higher temperature level, a partial ablation of the vessel wall has to be to expected in the PWR scenario, which is not the case in the FOREVER tests. But nevertheless the FOREVER tests are the only integral in-vessel retention experiments up to now and they led to a number of important insights about the behaviour of a vessel under the loading of a melt pool and pressure.
7

Thermomechanische Modellierung eines Reaktordruckbehälters in der Spätphase eines Kernschmelzunfalls

Willschütz, H.-G. 31 March 2010 (has links) (PDF)
Considering the late in-vessel phase of an unlikely core melt down scenario in a light water reactor (LWR) with the formation of a corium pool in the lower head of the re-actor pressure vessel (RPV) the possible failure modes of the RPV and the time to failure have to be investigated to assess the possible loadings on the containment. In this work, an integral model was developed to describe the processes in the lower plenum of the RPV. Two principal model domains have to be distinguished: The temperature field within the melt and RPV is calculated with a thermodynamic model, while a mechanical model is used for the structural analysis of the vessel wall. In the introducing chapters a description is given of the considered accident scenario and the relevant analytical, experimental, and numerical investigations are discussed which were performed worldwide during the last three decades. Following, the occur-ring physical phenomena are analysed and the scaling differences are evaluated between the FOREVER-experiments and a prototypical scenario. The thermodynamic and the mechanical model can be coupled recursively to take into account the mutual influence. This approach not only allows to consider the tem-perature dependence of the material parameters and the thermally induced stress in the mechanical model, it also takes into account the response of the temperature field itself upon the changing vessel geometry. New approaches are applied in this work for the simulation of creep and damage. Using a creep data base, the application of single creep laws could be avoided which is especially advantageous if large temperature, stress, and strain ranges have to be covered. Based on experimental investigations, the creep data base has been de-veloped for an RPV-steel and has been validated against creep tests with different scalings and geometries. It can be stated, that the coupled model is able to exactly describe and predict the vessel deformation in the scaled integral FOREVER-tests. There are uncertainties concerning the time to failure which are related to inexactly known material parame-ters and boundary conditions. The main results of this work can be summarised as follows: Due to the thermody-namic behaviour of the large melt pool with internal heat sources, the upper third of the lower RPV head is exposed to the highest thermo-mechanical loads. This region is called hot focus. Contrary to that, the pole part of the lower head has a higher strength and therefore relocates almost vertically downwards under the combined thermal, weight and internal pressure load of the RPV. On the one hand, it will be possible by external flooding to retain the corium within the RPV even at increased pressures and even in reactors with high power (as e.g. KONVOI). On the other hand, there is no chance for melt retention in the considered scenario if neither internal nor external flooding of the RPV can be achieved. Two patents have been derived from the gained insights. Both are related to pas-sively working devices for accident mitigation: The first one is a support of the RPV lower head pole part. It reduces the maximum mechanical load in the highly stressed area of the hot focus. In this way, it can prevent failure or at least extend the time to failure of the vessel. The second device implements a passive accident mitigation measure by making use of the downward movement of the lower head. Through this, a valve or a flap can be opened to flood the reactor pit with water from a storage res-ervoir located at a higher position in the reactor building. With regard to future plant designs it can be stated - differing from former presump-tions - that an In-Vessel-Retention (IVR) of a molten core is possible within the reac-tor pressure vessel even for reactors with higher power.
8

Thermomechanische Modellierung eines Reaktordruckbehälters in der Spätphase eines Kernschmelzunfalls

Willschütz, H.-G. January 2006 (has links)
Considering the late in-vessel phase of an unlikely core melt down scenario in a light water reactor (LWR) with the formation of a corium pool in the lower head of the re-actor pressure vessel (RPV) the possible failure modes of the RPV and the time to failure have to be investigated to assess the possible loadings on the containment. In this work, an integral model was developed to describe the processes in the lower plenum of the RPV. Two principal model domains have to be distinguished: The temperature field within the melt and RPV is calculated with a thermodynamic model, while a mechanical model is used for the structural analysis of the vessel wall. In the introducing chapters a description is given of the considered accident scenario and the relevant analytical, experimental, and numerical investigations are discussed which were performed worldwide during the last three decades. Following, the occur-ring physical phenomena are analysed and the scaling differences are evaluated between the FOREVER-experiments and a prototypical scenario. The thermodynamic and the mechanical model can be coupled recursively to take into account the mutual influence. This approach not only allows to consider the tem-perature dependence of the material parameters and the thermally induced stress in the mechanical model, it also takes into account the response of the temperature field itself upon the changing vessel geometry. New approaches are applied in this work for the simulation of creep and damage. Using a creep data base, the application of single creep laws could be avoided which is especially advantageous if large temperature, stress, and strain ranges have to be covered. Based on experimental investigations, the creep data base has been de-veloped for an RPV-steel and has been validated against creep tests with different scalings and geometries. It can be stated, that the coupled model is able to exactly describe and predict the vessel deformation in the scaled integral FOREVER-tests. There are uncertainties concerning the time to failure which are related to inexactly known material parame-ters and boundary conditions. The main results of this work can be summarised as follows: Due to the thermody-namic behaviour of the large melt pool with internal heat sources, the upper third of the lower RPV head is exposed to the highest thermo-mechanical loads. This region is called hot focus. Contrary to that, the pole part of the lower head has a higher strength and therefore relocates almost vertically downwards under the combined thermal, weight and internal pressure load of the RPV. On the one hand, it will be possible by external flooding to retain the corium within the RPV even at increased pressures and even in reactors with high power (as e.g. KONVOI). On the other hand, there is no chance for melt retention in the considered scenario if neither internal nor external flooding of the RPV can be achieved. Two patents have been derived from the gained insights. Both are related to pas-sively working devices for accident mitigation: The first one is a support of the RPV lower head pole part. It reduces the maximum mechanical load in the highly stressed area of the hot focus. In this way, it can prevent failure or at least extend the time to failure of the vessel. The second device implements a passive accident mitigation measure by making use of the downward movement of the lower head. Through this, a valve or a flap can be opened to flood the reactor pit with water from a storage res-ervoir located at a higher position in the reactor building. With regard to future plant designs it can be stated - differing from former presump-tions - that an In-Vessel-Retention (IVR) of a molten core is possible within the reac-tor pressure vessel even for reactors with higher power.

Page generated in 0.1168 seconds