• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicación de ultrasonidos de potencia para la mejora de procesos de inactivación con fluidos supercríticos

Ortuño Cases, Carmen 03 September 2014 (has links)
La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes químicos, ha desarrollado tecnologías de conservación no térmicas. El CO2 supercrítico (SC-CO2 ), representa una tecnología no térmica de inactivación prometedora, ya que está encaminada a producir el mínimo impacto sobre las propiedades nutricionales y organolépticas de los alimentos. Sin embargo, en algunos casos se requieren condiciones de presión o temperatura elevadas, así como tratamientos excesivamente largos para garantizar la seguridad y estabilidad de los alimentos. En este sentido, con el objetivo de obtener la letalidad requerida empleando procesos más cortos o de menor intensidad, en el presente trabajo se ha desarrollado una combinación del SC-CO2 con ultrasonidos de potencia (HPU) y de SC-CO2 con altas presiones hidrostáticas (HHP), para ser empleadas en procesos de inactivación microbiana y enzimática. El objetivo principal de la presente Tesis fue evaluar tecnologías no térmicas de conservación basadas en la combinación de SC-CO2 y HPU, y en la combinación de SC-CO2 y HHP. Respecto a la combinación de SC-CO2 con HPU, se estudio la influencia del estado de crecimiento de las células, de las condiciones del proceso, de la naturaleza del medio y del uso o no de HPU, sobre las cinéticas de inactivación de microorganismos (Escherichia coli (E. coli) y Saccharomyces cerevisiae (S. cerevisiae)) y enzimas (pectin-metil-esterasa (PME)). Se emplearon modelos matematicos y técnicas de microscopia para describir las cinéticas y los mecanismos de inactivación, respectivamente. En cuanto a la combinación de SC-CO2 y HHP, se evaluó el efecto de la adición de diferentes niveles de CO2 en el envase sobre la eficacia del tratamiento con HHP para inactivar PME, peroxidasa (POD) y polifenol oxidasa (PPO) en feijoa pure. Se estudió la influencia del estado de crecimiento de las células de E. coli y S. cerevisiae inoculadas en medio de cultivo, LB e YPD Broth, respectivamente, sobre sus cinéticas de inactivación con SC-CO2 (350 bar, 35 ºC). Cultivos individuales de E. coli y S. cerevisiae se incubaron hasta que las células alcanzaron cuatro estados de crecimiento diferentes, desde la fase temprana exponencial hasta la fase estacionaria, para posteriormente ser tratadas con SC-CO2 a 350 bar y 35 ºC. Se comparó el proceso combinado de SC-CO2+HPU con el tratamiento de SC-CO2 para evaluar el efecto de los HPU sobre las cinéticas de inactivación con SC-CO2 de E. coli y S. cerevisiae en la fase temprana estacionaria, inoculados ambos microorganismos en medios de cultivo, y se determinó el efecto de diferentes temperaturas (31-41 ºC, 225 bar) y presiones (100-350 bar, 36 ºC). Con el objetivo de conocer los mecanismos de inactivación asociados a esta tecnología combinada (SC-CO2+HPU) se realizó un estudio morfológico. Se estudiaron las diferencias entre células de E. coli y S. cerevisiae no tratadas, tratadas con SC-CO2 (350 bar, 36 ºC, 5 min) y con SC-CO2+HPU (350 bar, 36 ºC, 5 min, 40 W) usando microscopía óptica (LM) y microscopía electrónica de transmisión (TEM). Se seleccionó el zumo de manzana y de naranja para estudiar la inactivación de ambos microorganismos con SC-CO2+HPU en matrices reales; además, se estudió la inactivación de la enzima pectin-metil-esterasa (PME) del zumo de naranja. Las experiencias se llevaron a cabo a diferentes temperaturas (31-41 ºC, 225 bar) y presiones (100-350 bar, 36 ºC). Las condiciones de temperatura y presión seleccionadas superan el punto crítico del CO2 y son menores que las condiones letales para ambos microorganismos. Tanto E. coli como S. cerevisiae se han seleccionado para el presente trabajo porque son componentes habituales de la flora responsable del deterioro de alimentos y son comúnmente empleados como indicadores de contaminación en alimentos. Se investigó la combinación de los SC-CO2 con HHP para determinar el efecto de diferentes niveles de CO2 (solo HHP (HHP); carbonatación y HHP (HHPcarb); carbonatación + adición de 8.5 ml de CO2 / g puré en el espacio de cabeza del paquete y HHP (HHPcarb+CO2 )) sobre la eficacia del tratamiento con HHP para inactivar PME, peroxidasa (POD) y polifenol oxidasa (PPO) en puré de feijoa contenido en una bolsa de plástico, a diferentes presiones (300, 450 y 600 MPa, durante 5 min). Los resultados mostraron que la resistencia de ambos microorganismos a los tratamientos de inactivación con SC-CO2 aumentó progresivamente conforme la fase de crecimiento avanzó, lo cual podría deberse a la activación de sistemas de protección naturales que desarrollan los microorganismos conforme se acercan a la fase estacionaria de crecimiento. Las cinéticas de inactivación de E. coli y S. cerevisiae se ajustaron al modelo de Weibull (R2 = 0.93; RMSE = 0.59) y al modelo de Gompertz (R2 = 0.96; RMSE = 0.53), respectivamente, que fueron adaptados para considerar la fase de crecimiento como uno de los parámetros de dichos modelos. Empleando SC-CO2 , la velocidad de inactivación de ambos microorganismos aumentó progresivamente con la presión y la temperatura. El tiempo necesario para alcanzar una inactivación completa de E. coli (8 ciclos-log) se redujo de 60 a 25 min al aumentar la presión de 100 a 350 bar (36 ºC), y de 75 a 40 min al aumentar la temperatura de 31 a 41 ºC (225 bar). La inactivación completa de S. cerevisiae (7 ciclos-log) se alcanzó únicamente tras 140 min de proceso a 350 bar y 36 ºC. En general, presiones y temperaturas más elevadas mejoran la solubilización del SC-CO2 en el medio e incrementan la fluidez de la membrana celular, respectivamente, facilitando el contacto y la penetración del CO2 , lo que favorece el descenso del pH intracelular y la extracción de componentes vitales para la célula. Sin embargo, al aplicar HPU en los tratamientos de SC-CO2 en medios de cultivo, se observó una drástica inactivación microbiana, alcanzándose una reducción total (107 -108 ciclos-log) tras solo 1-2 min de tratamiento. Aplicando SC-CO2+HPU no se observó un efecto significativo en el nivel de inactivación al aumentar la presión o la temperatura debido a que los HPU generan una vigorosa agitación que acelera los mecanismos de inactivación asociados a los SC-CO2 y enmascara el efecto de estas variables del proceso. Además, la cavitación generada por los HPU podría dañar la pared celular de los microorganismos, acelerando su inactivación. El estudio de la existencia de un posible efecto sinérgico entre ambas tecnologías reveló que la combinación de SC-CO2 y HPU tuvo un mayor efecto en la inactivación que la adición de los efectos individuales de ambas. Para E. coli, se alcanzó una reducción de 0.3, 0.9 y 8 ciclos-log tras 5 min de tratamiento con SC-CO2 , HPU y SC-CO2+HPU, respectivamente; para S. cerevisiae se alcanzó una reducción de 6.83 ciclos-log tras 2 min de tratamiento con SC-CO2+HPU, mientras que tras el mismo periodo de tiempo con sólo SC-CO2 o HPU no se observó ninguna reducción en el número de microorganismos. En todos los tratamientos llevados a cabo, la levadura S. cerevisiae mostró mayor resistencia a los tratamientos con SC-CO2 que la bacteria E. coli, lo cual podría estar relacionado con el mayor espesor de la pared celular de S. cerevisiae comparado con el de E. coli, 124.8 nm frente a 17.7 nm, respectivamente. Sin embargo, al combinar el SC-CO2 y los HPU, la agitación vigorosa y la cavitación del medio enmascaró las diferentes resistencias mostradas por ambos microorganismos en los tratamientos con SC-CO2 . Las imágenes de LM y TEM mostraron que tras 5 min de tratamiento con SC-CO2 se produjo una distribución irregular del contenido citoplasmático y aparecieron pequeñas modificaciones en la envoltura celular, no siendo ninguno de estos cambios letales para las células de E. coli ni de S. cerevisiae. Además, las mayores diferencias entre ambos microorganismos se identificaron en el efecto sobre la envoltura celular: en S. cerevisiae se observaron ligeras modificaciones aunque no se apreció rotura de la pared celular, mientras que la pared de las células de E. coli aparecieron con un alto grado de disolución, pérdida de cohesividad, protuberancias y algunas áreas desintegradas. Sin embargo, 5 min de tratamiento con SC-CO2+HPU fueron suficientes para alcanzar una inactivación completa de ambos microorganismos. Las imágenes de LM y TEM revelaron mayor proporción de regiones vacías dentro de las células tratadas con SC-CO2+HPU, lo que indicó una clara reducción del contenido citoplasmático. La envoltura de las células de E. coli se desintegró totalmente, mientras que las paredes de las células de S. cerevisiae perdieron parcialmente su estructura laminada y se pudieron observar algunas paredes rotas. Por tanto, los mecanismos de inactivación asociados a los SC-CO2+HPU podrían estar relacionados con el fenómeno de cavitación generado por los HPU, el cual daña bruscamente la envoltura celular incrementando tanto la ruptura de la membrana celular como la desintegración del contenido intracelular. Los daños generados por el tratamiento de SC-CO2+HPU fueron tan severos que evitaron una posible recuperación de las células durante un almacenamiento posterior al tratamiento (6 semanas a 4 ºC). En promedio, la inactivación de ambos microorganismos con SC-CO2+HPU en zumo de manzana (5.3 min) fue más lenta que en zumo de naranja (4.6 min); y en ambos zumos más lenta que en medios de cultivo (1.5 min). Esto podría estar relacionado con el contenido de azúcar del medio y la solubilización del CO2 en el mismo. El azúcar se liga al agua del medio, por tanto, la cantidad de agua disponible donde el CO2 puede disolverse es menor en zumo de manzana (15.6 ºBrix) que en zumo de naranja (11.6 ºBrix); y menor en ambos zumos que en LB (2 ºBrix) o YPD (5 ºBrix) Broth. Además, empleando SC-CO2+HPU, la velocidad de inactivación de ambos microorganismos inoculados en zumos aumentó con la presión y la temperatura. Esto podría estar relacionado con la composición de los zumos, los cuales no se saturan rápidamente de CO2 en los tratamientos con SC-CO2+HPU como sí ocurre en las experiencias llevadas a cabo sobre medios de cultivo, de manera que un incremento de presión o temperatura puede facilitar la solubilización del CO2 . Contrariamente a los resultados obtenidos con SC-CO2+HPU sobre medios de cultivo, donde no se observaron diferencias entre E. coli y S. cerevisiae, en zumos E. coli mostró mayor resistencia que S. cerevisiae. En promedio, para alcanzar una completa inactivación de E. coli y S. cerevisiae se necesitó un tiempo de tratamiento de 6.6 y 3.3 min, respectivamente. En zumos, la vigorosa solubilización del CO2 generada por los HPU podría estar dificultada por un mayor contenido de azúcar, por tanto los mecanismos de inactivación podrían estar gobernados principalmente por el fenómeno de cavitación y el tamaño de los microorganismos. El tamaño de las células de S. cerevisiae es mucho mayor que el de las de E. coli, por tanto, la probabilidad de que las burbujas de cavitación afecten a la estructura celular será mayor para S. cerevisiae que para E. coli. Por otro lado, la inactivación de la enzima PME mediante SC-CO2+HPU aumentó con la presión y la temperatura, aunque su inactivación completa no se alcanzó en ninguna de las condiciones estudiadas. La inactivación de enzimas tratadas mediante SC-CO2 se debe a la bajada de pH, al efecto inhibitorio del CO2 sobre la actividad enzimática y a los cambios estructurales generados por el SC-CO2 . La enzima PME mostró mayor resistencia a los tratamientos con SC-CO2+HPU que los microorganismos E. coli o S. cerevisiae en zumo de naranja (se alcanzó una reducción del 18.9 %, 62.4 % y 88.1 %, a 36 ºC y 225 bar tras 2 min de tratamiento, respectivamente), lo que puede atribuirse a la diferente naturaleza y tamaño de los microorganismos y las enzimas. El modelo de Peleg Tipo A (R 2 = 0.936; RMSE = 0.561) y el modelo de Weibull (R2 = 0.923; RMSE = 0.561) se adaptaron para describir las cinéticas de inactivación de E. coli y S. cerevisiae con SC-CO2+HPU en zumo de manzana, respectivamente, incluyendo la presión y la temperatura como parámetros de dichos modelos. El modelo Bifásico (R 2 = 0.960; RMSE = 0.391), el modelo de Peleg Tipo B (R 2 = 0.894; RMSE = 0.687) y el modelo fraccional (R2 = 0.931; RMSE = 0.085), se adaptaron para describir las cinéticas de inactivación de E. coli, S. cerevisiae y PME con SC-CO2+HPU en zumo de naranja, respectivamente, incluyendo como parámetros de dichos modelos la presión y la temperatura. Los resultados revelaron que la actividad residual de las enzimas PME, POD y PPO descendió conforme aumentó la presión, ya que la presión genera un desorden estructural que puede cambiar la estructura tri-dimensional de las enzimas. Las muestras tratadas con HHPcarb+CO2 mostraron un mayor grado de inactivación de las tres enzimas, comparado con las muestras tratadas con HHPcarb o HHP, en cualquier condición de presión seleccionada. Esto podría deberse a una mayor cantidad de CO2 disuelto, que provocaría una mayor caída de pH y la consecuente desnaturalización de las enzimas. Además, el CO2 disuelto en el puré durante el tratamiento de HHP, podría generar un repentino y significativo burbujeo durante la despresurización, que podría contribuir a generar mayores cambios estructurales responsables de la inactivación enzimática. Finalmente, se puede concluir que la combinación de SC-CO2 con HPU o HHP mejoró los mecanismos de inactivación de microorganismos y enzimas. La aplicación de HPU agiliza los tratamientos con SC-CO2 , acelerando la solubilización del CO2 en el medio, que es el primer paso en los tratamientos con SC-CO2 ; y generando el fenómeno de cavitación que daña las paredes celulares, facilitando tanto la penetración del SC-CO2 a las células como la extracción de componentes intracelulares, lo que acelera la muerte de las células microbianas. Además, la combinación de SC-CO2 con HHP aceleró la inactivación de enzimas en comparación con HHP. Empleando estas tecnologías combinadas, se pueden utilizar tiempos de proceso razonables para la industria alimentaria, así como condiciones de tratamiento suaves, lo que resultaría en una reducción del coste del proceso y en una minimización del impacto sobre las propiedades nutricionales y organolépticas de los productos tratados. Se recomienda llevar a cabo mas investigaciones para conocer detalladamente los mecanismos de inactivación de microorganismos y enzimas con SC-CO2+HPU y SC-CO2+HHP. Tambien sería interesante conocer el efecto de estas tecnologías no térmicas combinadas sobre las propiedades físico-químicas de los alimentos tratados y sobre la aceptación de los mismos por parte del consumidor. / Ortuño Cases, C. (2014). Aplicación de ultrasonidos de potencia para la mejora de procesos de inactivación con fluidos supercríticos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39344

Page generated in 0.0677 seconds