Spelling suggestions: "subject:"incidence angle"" "subject:"lncidence angle""
1 |
Load Adapted Solar Thermal Combisystems - Optical Analysis and Systems OptimizationNordlander, Svante January 2004 (has links)
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
|
2 |
Avaliacao morfologica das superficies do esmalte e do cemento dental apos a irradiacao do laser ER:YAG em diferentes angulacoesTANNOUS, JOSE T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:44Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:51Z (GMT). No. of bitstreams: 1
07297.pdf: 2897384 bytes, checksum: ade16901adf7663b2eb89bed60b5b413 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
3 |
Estudo da influencia da angulacao do feixe laser na morfologia de esmalte e dentina irradiados com laser de Er:YAGJUNQUEIRA JUNIOR, DUILIO N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:47:31Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:32Z (GMT). No. of bitstreams: 1
08992.pdf: 4832168 bytes, checksum: d150537357e8f36a3b3fcc626f7916b9 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
4 |
Avaliacao morfologica das superficies do esmalte e do cemento dental apos a irradiacao do laser ER:YAG em diferentes angulacoesTANNOUS, JOSE T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:44Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:51Z (GMT). No. of bitstreams: 1
07297.pdf: 2897384 bytes, checksum: ade16901adf7663b2eb89bed60b5b413 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
5 |
Estudo da influencia da angulacao do feixe laser na morfologia de esmalte e dentina irradiados com laser de Er:YAGJUNQUEIRA JUNIOR, DUILIO N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:47:31Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:32Z (GMT). No. of bitstreams: 1
08992.pdf: 4832168 bytes, checksum: d150537357e8f36a3b3fcc626f7916b9 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
6 |
Korekce lokálního dopadového úhlu SAR dat pro analýzu časových řad: metoda specifická pro krajinný pokryv / A correction of the local incidence angle of SAR data: a land cover specific approach for time series analysisPaluba, Daniel January 2020 (has links)
To ensure the highest possible temporal resolution of SAR data, it is necessary to use all the available acquisition orbits and paths of a selected area. This can be a challenge in a mountainous terrain, where the side-looking geometry of space-borne SAR satellites in combination with different slope and aspect angles of terrain can strongly affect the backscatter intensity. These errors/noises caused by terrain need to be eliminated. Although there have been methods described in the literature that address this problem, none of these methods is prepared for operable and easily accessible time series analysis in the mountainous areas. This study deals with a land cover-specific local incidence angle (LIA) correction method for time-series analysis of forests in mountainous areas. The methodology is based on the use of a linear relationship between backscatter and LIA, which is calculated for each image separately. Using the combination of CORINE and Hansen Global Forest databases, a wide range of different LIAs for a specific forest type can be generated for each individual image. The algorithm is prepared and tested in cloud-based platform Google Earth Engine (GEE) using Sentinel-1 open access data, SRTM digital elevation model, and CORINE and Hansen Global Forest databases. The method was tested...
|
7 |
Low-concentrating, stationary solar thermal collectors for process heat generationHess, Stefan January 2014 (has links)
The annual gain of stationary solar thermal collectors can be increased by non-focusing reflectors. Such concentrators make use of diffuse irradiance. A collector’s incidence angle modifier for diffuse (diffuse-IAM) accounts for this utilization. The diffuse irra-diance varies over the collector hemisphere, which dynamically influences the diffuse-IAM. This is not considered by state-of-the-art collector models. They simply calculate with one constant IAM value for isotropic diffuse irradiance from sky and ground. This work is based on the development of a stationary, double-covered process heat flat-plate collector with a one-sided, segmented booster reflector (RefleC). This reflector approximates one branch of a compound parabolic concentrator (CPC). Optical meas-urement results of the collector components as well as raytracing results of different variants are given. The thermal and optical characterization of test samples up to 190 °C in an outdoor laboratory as well as the validation of the raytracing are discussed. A collector simulation model with varying diffuse-IAM is described. Therein, ground reflected and sky diffuse irradiance are treated separately. Sky diffuse is weighted with an anisotropic IAM, which is re-calculated in every time step. This is realized by gener-ating an anisotropic sky radiance distribution with the model of Brunger and Hooper, and by weighting the irradiance from distinct sky elements with their raytraced beam-IAM values. According to the simulations, the RefleC booster increases the annual out-put of the double-covered flat-plate in Würzburg, Germany, by 87 % at a constant inlet temperature of 120 °C and by 20 % at 40 °C. Variations of the sky diffuse-IAM of up to 25 % during one day are found. A constant, isotropic diffuse-IAM would have under-valued the gains from the booster by 40 % at 40 °C and by 20 % at 120 °C. The results indicate that the gain of all non-focusing solar collectors is undervalued when constant, isotropic diffuse-IAMs calculated from raytracing or steady-state test data are used. Process heat generation with RefleC is demonstrated in a monitored pilot plant at work-ing temperatures of up to 130 °C. The measured annual system utilization ratio is 35 %. Comparing the gains at all inlet temperatures above 80 °C, the booster increases the an-nual output of the double-covered flat-plates by 78 %. Taking all inlet temperatures, the total annual gains of RefleC are 39 % above that of the flat-plates without reflectors. A qualitative comparison of the new simulation model results to the laboratory results and monitoring data shows good agreement. It is shown that the accuracy of existing collector models can be increased with low effort by calculating separate isotropic IAMs for diffuse sky and ground reflected irradiance. The highest relevance of this work is seen for stationary collectors with very distinctive radiation acceptance.
|
8 |
The use of Inverse Neural Networks in the Fast Design of Printed Lens AntennasGosal, Gurpreet Singh January 2015 (has links)
In this thesis the major objective is the implementation of the inverse neural network concept in the design of printed lens (transmitarray) antenna. As it is computationally extensive to perform full-wave simulations for entire transmitarray structure and thereafter perform optimization, the idea is to generate a design database assuming that a unit cell of the transmitarray is situated inside a 2D infinite periodic structure. This way we generate a design database of transmission coefficient by varying the unit cell parameters. Since, for the actual design, we need dimensions for each cell on the transmitarray aperture and to do this we need to invert the design database.
The major contribution of this thesis is the proposal and the implementation of database inversion methodology namely inverse neural network modelling. We provide the algorithms for carrying out the inversion process as well as provide check results to demonstrate the reliability of the proposed methodology. Finally, we apply this approach to design a transmitarray antenna, and measure its performance.
|
9 |
Comportamiento Óptico y Térmico de un Concentrador Solar Lineal con reflector estacionario y Foco MóvilPujol Nadal, Ramon 30 July 2012 (has links)
El concentrador solar Fixed Mirror Solar Concentrator (FMSC) apareció en los años 70 con la finalidad de reducir costes en la producción de energía termoeléctrica. Este diseño consiste en un concentrador de reflector estacionario y foco móvil, presenta buena integrabilidad en cubiertas, y es capaz de alcanzar temperaturas entre 100 y 200ºC manteniendo una eficiencia aceptable.
En esta tesis se expone una metodología para determinar el comportamiento del FMSC. Se ha desarrollado una herramienta de cálculo basada en el método de ray-tracing, que simula el trazado de los rayos solares en el sistema óptico. Con esta herramienta se ha analizado el comportamiento óptico y térmico del FMSC, y de la versión con espejos curvos Curved Slats Fixed Mirror Solar Concentrator (CSFMSC). Se ha realizado un análisis paramétrico para conocer la influencia de los distintos parámetros en el modificador de ángulo (IAM), y para obtener los diseños óptimos a una temperatura de 200ºC para tres climas en diferentes latitudes.
Se han comparado los valores teóricos obtenidos mediante ray-tracing con dos prototipos ensayados, obteniendo un buen ajuste en ambos casos. Los ensayos han sido utilizados para determinar la curva de rendimiento de uno de los prototipos. Se ha hecho uso del método propuesto en la norma EN-12975-2:2006, combinado con valores de IAM obtenidos mediante ray-tracing. Se prueba que esta combinación puede ser útil para obtener la curva de rendimiento de colectores complejos con un modelo biaxial para el IAM. / The Fixed Mirror Solar Concentrator (FMSC) appeared during the 70s with the aim of reducing costs in the production of electricity in solar thermal power plants. This design consists of a concentrator with fixed reflector and moving receiver, has a very good integrability into building roofs and can reach temperatures between 100 and 200ºC with an acceptable efficiency.
In this Thesis a methodology is presented for the determination of the behaviour of the FMSC. A simulation tool based on the forward ray-tracing method has been developed. The optical and thermal behaviour of the FMSC and its curved mirror variation called the Curved Slats Fixed Mirror Solar Concentrator (CSFMSC), have been analyzed with this tool. A parametric analysis has been carried out in order to determine the influence of the different parameters on the Incidence Angle Modifier (IAM) and to determine the optimal designs at a temperature of 200ºC for three different climates at different latitudes.
The theoretical values obtained from the ray-tracing code have been compared with two experimental prototypes. The experimental and numerical results obtained show a good fit. The efficiency curve of one of the prototypes has been determined from the experimental tests. The methodology proposed in the norm EN-12975-2:2006 has been used in combination with IAM values obtained by ray-tracing. It has been shown that this combination can be effectively used to obtain the efficiency curve of complex collectors with a bi-axial IAM model.
|
Page generated in 0.0576 seconds