• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Benefits of an Expansion to UDOT's Incident Management Program

Bennett, Logan Stewart 03 August 2021 (has links)
In 2018 the Utah Department of Transportation (UDOT) funded a study in which data were collected to evaluate performance measures for UDOT's Incident Management Team (IMT) program. After that study was completed, UDOT received funding to expand the size of its IMT program. Additionally, TransSuite, a data source used by the UDOT Traffic Operations Center to log incident-related data, was reconfigured to provide a higher quantity of performance measure data. This study made use of the new data source, in addition to Computer Aided Dispatch logs provided by the Utah Highway Patrol that were used in the first study, to collect performance measure data of the expanded program and measure the impacts of the IMT program expansion. Using these two datasets, a reanalyzed 2018 dataset and a new 2020 dataset, a comparison of performance measures was made. Performance measures studied included those defined as important by the Federal Highway Administration's Focus States Initiative in 2009, namely Roadway Clearance Time, Incident Clearance Time, and Response Time. These performance measures were calculated for IMT responders at 320 incidents in 2018 and 289 incidents in 2020. In addition, data regarding the affected volume associated with incidents, the excess travel time accumulated due to incidents, and the excess user cost associated with incident congestion were gathered. In 2018, 188 incidents were analyzed for these user impacts, and in 2020 144 incidents were analyzed. Statistical analyses were conducted to compare IMT performance between the two years and to determine relationships between performance measures and user impacts. The effects of the COVID-19 pandemic affected traffic volumes during this study, and statistical analyses were adjusted to account for volume differences between the two years. Results indicated that the expansion of the IMT program has allowed UDOT to respond faster to incidents, and respond to a larger quantity of incidents over a larger coverage area and in extended operating hours. Performance of the expanded IMT program has had significant effects in reducing incident-related congestion and its costs.
2

Analysis of Performance Measures of Traffic Incident Management in Utah

Hadfield, Mitchell Gregory 16 June 2020 (has links)
In 2009 the Federal Highway Administration published a report regarding a Focus States Initiative that had been conducted with 11 states to discuss the development of national Traffic Incident Management (TIM) standards. Performance measures were defined, and a national TIM dashboard created, but very little data has been added to the dashboard since. In this research study, performance measures of the Utah Department of Transportation (UDOT) TIM program were analyzed. Data availability was first assessed to determine whether these performance measures could be calculated. It was determined that crash response data available from the Utah Highway Patrol (UHP) could be used to calculate the performance measures of Incident Management Teams (IMT) and UHP units; however, roadway clearance data were missing. UHP personnel agreed to collect additional data regarding crash roadway clearance for six months of the study. Performance measures of response time (RT), roadway clearance time (RCT), and incident clearance time (ICT) were calculated for responding units at 168 crashes. Using the crash response data from UHP and traffic speed, travel time, and volume data from UDOT databases, 83 of the 163 crashes that met additional criteria were evaluated to determine the volume of traffic affected (AV) by each incident and the associated user cost (EUC). Statistical analyses to determine relationships between different measures such as RT, RCT, ICT, AV, and EUC were conducted to assist UDOT in optimizing the allocation of their IMT resources.
3

Analysis of Benefits of UDOT's Expanded Incident Management Team Program

Hyer, Joel Clegg 16 November 2023 (has links) (PDF)
In 2019, the Utah Department of Transportation (UDOT) funded a research study evaluating the performance measures of UDOT's expanded Incident Management Team (IMT) program. The number of IMTs patrolling Utah roadways increased from 13 to 25 between 2018 and 2020. Crash data were collected from the Utah Highway Patrol's Computer Aided Dispatch database and from the UDOT TransSuite database to compare IMT performance measures between the two years and to evaluate the benefits of the expanded IMT program. However, these data were compromised due to the effects of the COVID-19 pandemic. This study collected data for 2022 using the same methodology as the Phase II study to compare IMT performance measures in 2022 with those of 2018 after traffic volumes had returned to a similar level as those of pre-pandemic levels. There were 283 and 307 incidents for the years of 2018 and 2022, respectively, that were analyzed for IMT performance measures which include response time, roadway clearance time, and incident clearance time. There were 172 and 236 incidents for the years of 2018 and 2022, respectively, that were analyzed for user impacts which were affected volume, excess travel time, and excess user costs. Results of the statistical analyses conducted on the 2018 and 2022 datasets show that IMTs can respond more quickly to incidents in a larger coverage area with significantly reduced user impacts. The expanded IMT program is also able to respond to more incidents, including those of high severity, while significantly decreasing congestion.

Page generated in 0.0687 seconds