• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Analysis of Finish Turning of Inconel 617

Lai, Rachel January 2023 (has links)
Inconel 617 is a nickel-based superalloy whose properties include corrosion and oxidation resistance in high temperature environments. Due to their material properties, Inconel alloys are commonly used in aerospace applications where resistance to high pressure and temperature is required. These properties also cause the material to be hard to machine due to high temperatures in the cutting zone and its tendency to work harden. This paper focuses on improving the surface integrity and tool life for turning of Inconel 617 for use in next-generation nuclear applications. Various machining parameters are tested to improve the finish and tool life such as the feed rate, cutting speed, and depth of cut. While the machining of popular Inconel grades, such as Inconel 718, have been highly studied and understood, Inconel 617 lacks the knowledge base and research to define how the alloy behaves in machining and how it compares to other grades. Tests on tool coatings confirmed that commercially available coatings are durable enough to withstand the machining of this superalloy in finish turning and determined that AlTiN coatings provide the longest tool life. The investigations performed uncovered the relationship between cutting parameters and their influence on the surface integrity and tool life. MQL deposition was tested and found to be comparable and at times better than conventional flood coolant and may be considered a replacement for coolant after more improvement. This work details the knowledge and experimental procedure used to understand the machining of this superalloy. / Thesis / Master of Applied Science (MASc) / The purpose of this research is to develop an understanding of the machining of Inconel 617 for next-generation nuclear reactors. Canada’s plan to phase out coal-fired plants and deploy new nuclear reactors is contingent on being able to manufacture the necessary components. Inconel 617 is slated to be used in these high temperature, corrosive environments due to its high strength in elevated temperatures and its resistance to corrosion. However, since the material is a recent addition to the list of compatible materials, not much research has been performed on the manufacturing of this superalloy. Factors like cutting speed, coolant, and tooling were investigated and understood with the aim of improving the cost and time associated with manufacturing these nuclear grade components.
2

Microstructural investigation of alloys used for power generation industries

Krishna, Ram January 2010 (has links)
Nickel based superalloys are currently being investigated for high temperature applications in advanced steam power plant operating at temperatures of 700˚C and above. Three nickel-based superalloys Inconel 617, Inconel 625 and Nimonic 263 alloys, which are of primary interest for boiler technology components such as furnace walls, superheater tubes, header and steam pipes, etc and for steam turbine technology components such as HP &IP cylinders, rotor forgings, casing and valve chest, blading, etc., have been evaluated for long and short term creep performance. Creep deformation processes occurring at high temperatures and stresses lead to the evolution of microstructures in the form of precipitation, precipitate coarsening and recovery effects. The deterioration in mechanical properties as a result of this microstructural change has been evaluated by hardness testing. This work discusses the microstructural evolution occurring in alloys in samples that have been creep exposed at a series of temperatures from 650°C to 775°C and for durations from 1000 to 45,000 hours using advanced FEGSEM, TEM, XRD and phase extraction techniques. The fractions and morphology of different phases, their locations during exposure to higher temperatures and probable creep fracture mechanism in these alloys are illustrated and discussed.
3

MICROSTRUCTURAL EVOLUTION IN ADVANCED BOILER MATERIALS FOR ULTRA-SUPERCRITICAL COAL POWER PLANTS

WU, QUANYAN 03 October 2006 (has links)
No description available.

Page generated in 0.0461 seconds