• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Behavior of Moment Resisting Steel Frames Under Seismic Excitation with Variation of Geometric Dimensions of Architectural Setbacks

Kayikci, Duygu y 12 May 2011 (has links)
This study investigates seismic response of the Moment-Resisting-Steel Frames (MRSF) with the architectural setbacks. The main objective of the study is to understand the variation of the elastic and inelastic, static and dynamic behavior with changes in the geometric dimensions of the tower portion. A second objective of the study is to determine the adequacy of the analysis procedures of various rigors, specified in current seismic design provision, in predicting those behaviors for MRSF with various size of setback. The analytical study is conducted using a regular and 16 irregular models to capture all possible combinations of configuration of setback in five-story, five-bay MRSFs. An irregular model is developed by gradually changing the horizontal and vertical dimensions of the tower portion of the regular base 2D frame-model. All models were designed for (a) equal global displacement and uniform distribution of inter-story drift under First-Mode (FM) lateral force distribution pattern at first significant yield, and (b) equal period of vibration at the first mode, using Nonlinear Static Seismic analysis procedure. Among the conclusions derived from the research is that the variation of (a) the elastic and inelastic inter-story drift, the ductility demand for the top three stories, and (b) the elastic and inelastic global displacement exhibited a pattern similar to the variation of the FM participation factor at the roof, PF1Φr,1. The square-root-of-sum-of-square (SRSS) distribution provided accurate estimates of elastic story shear and inter-story drift demand as well as the story yield strength and drift.
2

Comparative performance of ductile and damage protected bridge piers subjected to bi-directional earthquake attack

Mashiko, Naoto January 2006 (has links)
Incremental Dynamic Analysis (IDA) procedures are advanced and then applied to a quantitative risk assessment for bridge structures. This is achieved by combining IDA with site-dependent hazard-recurrence relations and damage outcomes. The IDA procedure is also developed as a way to select a critical earthquake motion record for a one-off destructive experiment. Three prototype bridge substructures are designed according to the loading and detailing requirements of New Zealand, Japan and Caltrans codes. From these designs 30 percent reduced scale specimens are constructed as part of an experimental investigation. The Pseudodynamic test is then to control on three specimens using the identified critical earthquake records. The results are presented in a probabilistic riskbased format. The differences in the seismic performance of the three different countries' design codes are examined. Each of these current seismic design codes strive for ductile behaviour of bridge substructures. Seismic response is expected to be resulting damage on structures, which may threaten post-earthquake serviceability. To overcome this major performance shortcoming, the seismic behaviour under bi-directional lateral loading is investigated for a bridge pier designed and constructed in accordance with Damage Avoidance principles. Due to the presence of steel armoured rocking interface at the base, it is demonstrated that damage can be avoided, but due to the lack of hysteresis it is necessary to add some supplemental damping. Experimental results of the armoured rocking pier under bi-directional loading are compared with a companion ductile design specimen.

Page generated in 0.0935 seconds