• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Palladium telluride quantum dots biosensor for the determination of indinavir drug

Feleni, Usisipho January 2013 (has links)
Magister Scientiae - MSc / Indinavir is a potent and well tolerated protease inhibitor drug used as a component of the highly active antiretroviral therapy (HAART) of HIV/AIDS, which results in pharmacokinetics that may be favourable or adverse. These drugs work by maintaining a plasma concentration that is sufficient to inhibit viral replication and thereby suppressing a patient’s viral load. A number of antiretroviral drugs, including indinavir, undergo metabolism that is catalysed by cytochrome P450-3A4 enzyme found in the human liver microsomes. The rate of drug metabolism influences a patient’s response to treatment as well as drug interactions that may lead to life-threatening toxic conditions, such as haemolytic anaemia, kidney failure and liver problems. Therapeutic drug monitoring (TDM) during HIV/AIDS treatment has been suggested to have a potential to reduce drug toxicity and optimise individual therapy. A fast and reliable detection technique, such as biosensing, is therefore necessary for the determination of a patient’s metabolic profile for indinavir and for appropriate dosing of the drugs. In this study biosensors developed for the determination of ARV drugs comprised of cysteamine self-assembled on a gold electrode, on which was attached 3-mercaptopropionic acid-capped palladium telluride (3-MPA-PdTe) or thioglycolic acid-capped palladium telluride (TGA-PdTe) quantum dots that are cross-linked to cytochrome P450-3A4 (CYP3A4) in the presence of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide. The quantum dots were synthesized in the presence of capping agents (3-MPA or TGA) to improve their stability, solubility and biocompatibility. The capping of PdTe quantum dots with TGA or 3-MPA was confirmed by FTIR, where the SH group absorption band disappeared from the spectra of 3-MPA-PdTe and TGA-PdTe. The particle size of the quantum dots (< 5 nm) was estimated from high resolution transmission electron microscopy (HRTEM) measurements. Optical properties of the materials were confirmed by UV-Vis spectrophotometry which produced absorption iii bands at ~320 nm that corresponded to energy band gap values of 3 eV (3.87 eV) for TGAPdTe (3-MPA-PdTe) quantum dots. The electrocatalytic properties of the quantum dots biosensor systems were studied by cyclic voltammetry (CV) for which the characteristic reduction peak at 0.75 V was used to detect the response of the biosensor to indinavir. Results for indinavir biosensor constructed with 3-MPA-SnSe quantum dots are also reported in this thesis. The three biosensors systems were very sensitive towards indinavir; and gave low limits of detection (LOD) values of 3.22, 4.3 and 6.2 ng/mL for 3-MPA-SnSe, 3-MPA-PdTe and TGA-PdTe quantum dots biosensors, respectively. The LOD values are within the ‘maximum plasma concentration’ (Cmax) value of indinavir (5 - 15 ng/mL) normally observed 8 h after drug intake.

Page generated in 0.213 seconds