• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Roles of miR-137 in Muscular Dystrophy and Muscular Dystrophy-Related Phenotypes in Drosophila melanogaster

Chhetri, Shruti 04 April 2019 (has links)
No description available.
2

Spatio-Temporal Control Of Drosophila Indirect Flight Muscle Development And Maintenance By The Transcription Factor Erect Wing

Rai, Mamta 12 1900 (has links) (PDF)
Muscle development involves concerted action of a repertoire of mechanisms governing myoblast proliferation, migration, fusion and differentiation. Subsequently, there are cellular events administrating proper muscle function and maintenance of muscle integrity. Chapter 1 covers what is known about muscle development, building up of mass and maintenance in vertebrates and Drosophila, highlighting the myogenic programs and factors that play a role in them. The formation of vertebrate skeletal muscles can be recapitulated in Drosophila indirect flight muscles (IFMs), making IFMs an interesting model to dissect and understand the mechanisms of muscle development and maintenance. The cellular and developmental events that occur during IFM development have been discussed in detail along with their genetic control which encompasses both cell autonomous and cell non-autonomous mechanisms. The fly resources and tools used for experimentations have been described in Chapter 2. One of the hallmark events during muscle development is myoblast fusion. Myoblasts are kept in undifferentiated state until they fuse through a balanced action of anti-differentiation and pro-differentiation factors. The swarming myoblasts are in semi-differentiated state and just prior to fusion should exit cell cycle to achieve terminal differentiation. The mechanisms of cyclin/CDK complexes and their regulation via CKI (CDK inhibitor) are known in a cell. However, tissue specific factors exerting additional control on molecules that participate in cell cycle have been proposed but have not been shown in vivo. Chapter 3 uncovers a novel role played by the transcription factor, Erect wing (Ewg) in IFM development and patterning. Despite the fact that Ewg is known to express in fusing myoblasts and nuclei of developing IFMs and has long been used as a nuclear marker for IFMs, the mechanism(s) behind Ewg‟s function has remained enigmatic. Historical perspective of Ewg has been presented in Chapter 1. One set of IFMs; dorsal longitudinal muscles (DLMs) require larval templates for their formation and the other set; dorsal ventral muscles (DVMs) form de novo. Chapter 3 shows that Ewg is required in a spatio-temporal fashion to initiate myoblast fusion process. In the absence of Ewg, the number of fusion events in a given time is reduced. In addition de novo fusion is observed in the region of DLM development just like DVM and overall IFM development is delayed resulting in an aberrant adult IFM pattern. Genetic studies undertaken reveal a requirement for Ewg in exerting a temporal control on myoblast fusion. This is achieved by down-regulating Cyclin E levels, as a result of which the myoblasts exit cell cycle at G1/S stage. Through this study the proposal for DLM development and pattern has been put forth as follows: i) appropriate progression of DLM development commences on synchronous exit of myoblasts from cell cycle. This function is facilitated by Ewg expression in fusing myoblasts assisting symmetrical DLM formation in hemithoraces. ii) DLM pattern of six muscles in each hemithorax is dependent on template survival which requires fusion of enough myoblasts and further subsequent fusion events to support the splitting of three larval templates or presumptive DLM. The muscles that develop should preserve their structural integrity for efficient functional output. Muscles perform extensive activities warranting high energy requirements. IFMs are widely utilised for thorax movements that aid flight. IFMs are exclusively oxidative in nature with upto 40% mass contributed by large mitochondria themselves. Chapter 4 describes yet another novel finding for Ewg function in IFM maintenance. Vertebrate homolog of Ewg is nuclear respiratory factor 1 (NRF1) known for its role in mitochondrial biogenesis. This prompted an investigation on the role of Ewg, if any, in mitochondrial function and IFM maintenance. In this chapter, Ewg null adult IFMs are shown to undergo degeneration. Mitochondria in these muscles show rounder and smaller phenotype. Mitochondria morphology is traced throughout Drosophila pupal DLM development and extensive fusion is observed in last one-fourth of pupal phase. In Ewg null condition transcripts of Opa1-like required for inner mitochondrial membrane fusion is found to be absent, suggesting lack of mitochondrial fusion behind the smaller mitochondrial morphology. This emerged as an intriguing problem since Ewg expression follows until sarcomerogenesis (formation of sarcomeres) initiates at mid pupal stage. Developmentally extending Ewg‟s expression beyond mid pupal stage is not observed to increase Opa1-like levels pointing an indirect regulation by Ewg. However, Opa1-like knock-down beyond mid pupal stage is not observed to result in any muscle or flight defect. It is thus proposed that Ewg expression early during muscle development helps to up-regulate Opa1-like levels needed to support mitochondrial growth and fusion. In addition, this chapter provides additional data on requirement of Opa1-like for maintenance of mitochondrial as well as muscle integrity. This is the first ever report of tissue specific temporal regulation of Opa1-like by Ewg. Chapter 3 and Chapter 4 conclude spatially segregated functional requirements of Ewg which are also mechanistically distinct. Expression in fusing myoblasts channelizes fusing myoblasts to exit cell cycle and undergo timely fusion saving the larval template, subsequent fusion assists template splitting thus forming the appropriate adult DLM pattern. On the other hand expression until mid pupal stage up-regulates Opa1-like expression, facilitating mitochondrial fusion during the late pupal stage. This as a result helps maintain structural integrity of muscles in the adult. Vertebrate skeletal muscle contains multiple muscle fibres that provide appropriate mass and size to muscles. As DLM share similarity in development to that of the vertebrate skeletal muscle, DLM organisation is studied to get insights into the mechanisms which regulate the process. Chapter 5 discusses role of nuclear number and nuclear activity in determining the DLM organisation. In order to alter nuclear number, myoblast population is reduced to amounts lesser than that of the wild type and to alter nuclear activity, two nuclear encoded genes Opa1-like and Marf , involved in inner and outer mitochondrial membrane fusion respectively have been knocked down in IFMs. First, the DLM organisation is established by comparing it to the vertebrate skeletal muscle organisation. This organisation is affected on lowering the number of myoblasts destined to fuse and form IFMs, without affecting the differentiation. On the other hand, when nuclear encoded mitochondrial fusion genes are knocked down, not only DLM organisation but their differentiation is also affected. A proposal for achieving DLM organisation has been presented which should also apply to vertebrate skeletal muscle given their developmental similarity. In conclusion, the studies decipher a novel mechanism by which a transcription factor, Ewg exerts a temporal control on myoblast fusions directly influencing progression of DLM formation, and thereby, symmetry and pattern. Moreover, Ewg is also shown here to regulate mitochondrial fusion during later pupal stages helping muscles to attain greater function and maintain structural integrity. Discovery of such regulatory mechanisms controlling mitochondrial dynamics in vertebrates can open up new avenues to understand and design new therapeutic approaches to tackle mitochondrial diseases. Additionally, myoblast fusion and hence myonuclear number and their efficient functioning are shown to be important determinants of muscle organisation. This has further implications in understanding and using stem cell science in dystrophic or atrophic or ageing related muscle loss and therapy.
3

Developmental and Functional Roles of Troponin-T Isoforms, and Exploring Genome-Wide Alterations in Drosophila Indirect Flight Muscle Mutants

Madan, Aditi January 2015 (has links) (PDF)
Muscle contraction is a highly fine-tuned process that requires the precise and timely construction of large protein sub-assemblies to form sarcomeres, the individual contractile units. Mutations in many of the genes encoding constituent proteins of this macromolecular machine result in defective functioning of the muscle tissue, and in humans, often lead to myopathic conditions like cardiomyopathies and muscular dystrophies, which affect a considerable number of people the world over. As more information regarding causative mutations becomes available, it becomes imperative to explore mechanisms of muscle development, maintenance and pathology. In striated muscles, contraction is regulated by the thin filament-specific tropomyosin (Tm) – troponin (Tn) complex (Ca2+-binding troponin-C, inhibitory troponin-I and tropomyosin-binding troponin-T). These troponin subunits are present in 1:1:1 ratio on thin filaments, with 1 Tm-Tn complex present on every 7th actin molecule. This stoichiometry is tightly regulated, and disturbances have been associated with functional defects. Each of these proteins has multiple isoforms, whose expression is controlled both spatially and temporally. The expression of specific combination of isoforms confers specific contractile properties to each muscle subtype. Drosophila melanogaster has been a preferred model of choice to study various aspects of muscle development for decades. In this study, the Indirect Flight Muscles (IFMs) of Drosophila have been used to investigate developmental and functional roles of two temporally regulated isoforms of a vital structural and regulatory component of the sarcomere – Troponin T (TnT). On a larger scale, whole genome expression profiles of mutants that are null for major myofbrillar proteins have also been discussed. IFMs serve as an excellent model system to address these questions, owing to the extreme ease of genetic manipulability in this system, and high degree of homology between mammalian and Dipteran cytoskeletal proteins. Chapter 1 covers basics of muscle biology, and the role of TnT in muscle contraction. Phenomena responsible for generating diversity in genes encoding muscle proteins – alternative splicing and isoform switching – have also been discussed. These mechanisms are highly conserved, as are patterns of TnT splicing and isoform expression across phyla. Mutations leading to altered splicing patterns lead to myopathic conditions, and the importance of model systems to study muscle biology has been emphasized. The advantages of studying Drosophila IFMs and a comprehensive overview of IFM development has been covered. The resources and experimental tools used have been described in Chapter 2. Two isoforms of TnT are alternatively spliced in the Drosophila thorax – one containing alternative exon 10a (expressed in adult IFMs and jump muscle); and one containing alternative exon 10b (expressed in pupae and newly eclosed flies). These exons are spliced in a mutually exclusive manner, and defects in splicing have been reported to cause uncontrolled, auto-destructive contractions. In Chapter 3, a splice mutant of TnT, up1, has been discussed, with respect to its developmental profile. Transgenic rescue experiments with two separate isoforms demonstrate rescue at the structural as well as functional level. Transgenic over-expression, however, leads to functional abnormalities, highlighting the importance of stoichiometry in multi-protein complexes. In Chapter 4, molecular signals that bring about the developmentally regulated TnT isoform switch are discussed. A splicing factor, Muscleblind, has been transgenically knocked down in normal and mutant IFMs to study effects on muscle function. Chapter 5 looks at whole genome transcriptional alterations in muscles null for either actin or myosin. All significant expression changes have been classified into categories based on different biological processes, and an attempt to differentiate generic muscle responses from filament-specific responses has been made. In conclusion, the studies have highlighted the importance of TnT isoform switching, and that extended expression of a pupal stage-specific isoform can partially compensate for loss of the adult isoform. Also, in the absence of major myofibrillar proteins, stress response pathways like heat shock response and protein degradation pathways are activated, along with a subset of metabolic responses that are unique to the thin or thick filament systems.
4

Unravelling The Mechanisms Of Myofibrillogenesis And Human Myopathies Using Drosophila Mutants

Salvi, Sheetal S 04 1900 (has links) (PDF)
Myofibrillogenesis is a complex process, which involves assembly of hundreds of structural proteins in a highly ordered manner to form the contractile structural unit of muscle, the sarcomere. Several myopathic conditions reported in humans are caused due to abnormal myofibrillogenesis owing to mutations in the genes coding for many of these structural proteins. These myopathies have highly variable clinical features and time of onset. Since their aetiology is poorly understood, it becomes imperative to have a model system to study the muscle defects. Present study proposes to employ the Indirect Flight Muscle (IFM) system in Drosophila melanogaster as a model to analyse the development/onset of some of these myopathies and resulting pathophysiology. We have carried out a systematic study on mutations in two major proteins of the sarcomere, actin and myosin, to understand the pathophysiology associated with the disease conditions and in turn gain insights into the process of myofibrillogenesis. To verify whether the human muscle phenotypes are observed in flies, we analysed the IFM for functional and structural defects categorised by the presence of aberrant sarcomeric structures. An important question that we have addressed is whether mutants of the Drosophila IFM recapitulate human conditions and whether it can serve as a good genetic model to study the developmental mechanisms of the human skeletal myopathies in vivo. Mutations of the human ACTA1 skeletal actin gene produce seven congenital myopathies – actin myopathy, nemaline rod myopathy, intranuclear rod myopathy, congenital fibre type disproportion, congenital myopathy with core-like areas, cap disease and zebra body myopathy. Four known mutations in Act88F—a Drosophila homologue of ACTA1—occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for muscle phenotypes with nemaline structures. Mutant homozygotes show phenotypes ranging from lack of myofibrils to almost normal sarcomeres at eclosion. Whereas, heterozygotes do allow myofibrillar assembly to certain extent; however, atypical structures are seen adjacent to normal sarcomeres. Aberrant Z disc-like structures and serial Z disc arrays, ‘zebra bodies’, are observed in homozygotes and heterozygotes of all the four Act88F mutants. The electron-dense structures observed in electron micrographs show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. A possible mechanism for the ‘zebra bodies’ is proposed based on this study. Analysis of IFM at early developmental stages shows that in three of the mutants, there is an abnormal myofibril assembly leading to malformed sarcomeres mirrored in the adult stages. In one of the Act88F mutants, normal myofibrils are seen post-eclosion but the IFM show activity dependant progression of muscle degeneration. All the Act88F mutants produce dominant disruption of muscle structure and function which cannot be rescued even by three copies of the wild type Act88F gene implying that the mutants are strong antimorphs. Myosin myopathies are a group of human muscle diseases with heterogeneous clinical features and are caused by mutations in the skeletal muscle myosin heavy chain. We identified two chemical mutagen generated flightless mutants, Ifm(2)RU1 and ifm(2)RU2 that map closely to myosin heavy chain gene (Mhc) region. Since there are no structural proteins predicted in the mapped region, it was likely that these two are Mhc mutations. We show that Ifm(2)RU1 and ifm(2)RU2 are indeed Mhc mutations and the molecular aberrations affect amino acid residues present in the myosin rod region. Human muscle myosin heavy chain (MyHC) mutations that cause Laing early onset distal myopathy and myosin storage myopathy occur in this domain of the protein. Even though mutations lie in the same region of myosin rod, Ifm(2)RU1 is semidominant, whereas ifm(2)RU2 is recessive. Both the mutants show IFM defects and the presence of abnormal myofibrils. Mutant myofibrillar structures can be rescued with an additional wild type Mhc gene copy. However, the restored myofibrillar structure is incapable of rescuing the flight ability of mutants. The muscle phenotypes are due to defects in thick filament assembly which manifest from the early stages of sarcomere development. The MHC protein rod region is an α-helix that forms coiled-coils which further self assemble to form thick filaments or aggregates as observed in in vitro conditions. Biophysical and biochemical analyses reveal that the coiled-coil structure of mutant rods is not affected, however the thermodynamic stability is altered in ifm(2)RU2 mutation. Interestingly, rod aggregate size and stability are not affected in mutant rods. The Drosophila MHC mutant rods were studied along with four MHC mutant rods that harbour human rod mutations to compare the molecular consequences. The Drosophila mutations do not hamper the rod structure and assembly. Therefore, the defects may arise due to altered interactions with myosin rod binding proteins. Flightin is an extensively studied myosin rod binding protein. The amount and phosphorylation status of flightin are an extremely sensitive measure of thick filament assembly. Flightin phosphorylation is affected in the mutants suggesting a functional dependence on MHC and it also indicates MHC instability. In the light of the work done, we have assessed the mutations with respect to their structure-functional implications. The acto-myosin interactions responsible for the defects are also discussed. Formation of unusual myofibrillar structures are analysed with regards to the process of myofibrillogenesis. An understanding of this entire process with the information available from IFM is reviewed in detail. The work so far has helped in understanding the manifestation of myopathies at tissue/cellular levels with insights into the plausible mechanisms of origin of the disease phenotypes. Myopathic condition may arise due to developmental or functional defects. For therapeutic considerations, the fly provides a simple test to inspect the effects of adding extra copies of the wild type gene. We conclude that the Drosophila IFM provide a good model system for the study of human ACTA1 and MyHC myopathies.

Page generated in 0.0471 seconds