• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classical & quantum dynamics of information and entanglement properties of fermion systems

Zander, Claudia 13 February 2012 (has links)
Due to their great importance, both from the fundamental and from the practical points of view, it is imperative that the various facets of the concepts of information and entanglement are explored systematically in connection with diverse physical systems and processes. These concepts are at the core of the emerging field of the Physics of Information. In this Thesis I investigate some aspects of the dynamics of information in both classical and quantum mechanical systems and then move on to explore entanglement in fermion systems by searching for novel ways to classify and quantify entanglement in fermionic systems. In Chapter 1 a brief review of the different information and entropic measures as well as of the main evolution equations of classical dynamical and quantum mechanical systems is given. The conservation of information as a fundamental principle both at the classical and quantum levels, and the implications of Landauer's theorem are discussed in brief. An alternative and more intuitive proof of the no-broadcasting theorem is also provided. Chapter 2 is a background chapter on quantum entanglement, where the differences between the concept of entanglement in systems consisting of distinguishable subsystems and the corresponding concept in systems of identical fermions are emphasized. Different measures of entanglement and relevant techniques such as majorization, are introduced. To illustrate some of the concepts reviewed here I discuss the entanglement properties of an exactly soluble many-body model which was studied in paper (E) of the publication list corresponding to the present Thesis. An alternative approach to the characterization of quantum correlations, based on perturbations under local measurements, is also briefly reviewed. The use of uncertainty relations as entanglement indicators in composite systems having distinguishable subsystems is then examined in some detail. Chapter 3 is based on papers (A) and (B) of the list of publications. Extended Landauer-like principles are developed, based amongst others on the conservation of information of divergenceless dynamical systems. Conservation of information within the framework of general probabilistic theories, which include the classical and quantum mechanical probabilities as particular instances, is explored. Furthermore, Zurek's information transfer theorem and the no-deleting theorem are generalized. Chapter 4 is based on articles (C) and (D) mentioned in the publication list, and investigates several separability criteria for fermions. Criteria for the detection of entanglement are developed based either on the violation of appropriate uncertainty relations or on inequalities involving entropic measures. Chapter 5 introduces an approach for the characterization of quantum correlations (going beyond entanglement) in fermion systems based upon the state disturbances generated by the measurement of local observables. Chapter 6 summarizes the conclusions drawn in the previous chapters. The work leading up to this Thesis has resulted in five publications in peer reviewed science research journals. / Thesis (PhD)--University of Pretoria, 2012. / Physics / unrestricted
2

Student Intuitions in Statistical Mechanics

Koerfer, Ebba January 2022 (has links)
This exploratory case study aimed to investigate patterns in student reasoning in statistical mechanics, in order to identify difficulties and develop ideas for future research. Upper-division undergraduate students, taking a course in statistical mechanics, were interviewed in groups. Here we present our findings regarding student difficulties in distinguishing microstates and macrostates, as well as distinguishable versus indistinguishable particles. We also present observed patterns of student reasoning about a simple, discrete system in contact with a heat bath. Our findings reveal problematic student intuitions of the high temperature limit. Several students were, however, able to transfer knowledge from a similar problem involving spin to improve their reasoning. / Denna explorativa fallstudie ämnade att undersöka mönster i studenters resonemang i statistisk mekanik, för att identifiera svårigheter och utveckla idéer för framtida forskning. Studenter i sista året på kandidatprogrammet i fysik, som läste en kurs i statistisk mekanik, intervjuades i grupper. Här presenterar vi våra fynd gällande studenters svårigheter med att skilja på mikrotillstånd och makrotillstånd, såväl som urskiljbara och ourskiljbara partiklar. Vi presenterar också observerade mönster i studenters resonemang kring ett simpelt, diskret system i kontakt med en värmereservoar. Våra fynd avslöjar problematiska intuitioner för gränsvärdet vid hög temperatur. Flera studenter kunde dock överföra kunskap från ett liknande problem, som handlade om spin, för att förbättra deras resonemang.

Page generated in 0.1053 seconds