• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites.

Lisgarten, J.N., Coll, M., Portugal, J., Wright, Colin W., Aymami, J. January 2001 (has links)
no / Cryptolepine, a naturally occurring indoloquinoline alkaloid used as an antimalarial drug in Central and Western Africa, has been found to bind to DNA in a formerly unknown intercalation mode. Evidence from competition dialysis assays demonstrates that cryptolepine is able to bind CG-rich sequences containing nonalternating CC sites. Here we show that cryptolepine interacts with the CC sites of the DNA fragment d(CCTAGG)2 in a base-stacking intercalation mode.
2

Cryptolepine-Induced Cell Death of Leishmania donovani Promastigotes Is Augmented by Inhibition of Autophagy.

Sengupta, S., Chowdhury, S., BoseDasgupta, S., Wright, Colin W., Majumder, H.K. January 2011 (has links)
no / Leishmania donovani are the causative agents of visceral leishmaniasis worldwide. Lack of vaccines and emergence of drug resistance warrants the need for improved drug therapy and newer therapeutic intervention strategies against leishmaniasis. In the present study, we have investigated the effect of the natural indoloquinoline alkaloid cryptolepine on L. donovani AG83 promastigotes. Our results show that cryptolepine induces cellular dysfunction in L. donovani promastigotes, which leads to the death of this unicellular parasite. Interestingly, our study suggest that cryptolepine-induced cell death of L. donovani is counteracted by initial autophagic features elicited by the cells. For the first time, we show that autophagy serves as a survival mechanism in response to cryptolepine treatment in L. donovani promastigotes and inhibition of autophagy causes an early increase in the amount of cell death. This study can be exploited for designing better drugs and better therapeutic strategies against leishmaniasis in future.

Page generated in 0.0702 seconds