Spelling suggestions: "subject:"indoor tracking system"" "subject:"lndoor tracking system""
1 |
Modeling, Control and Design of a Quadrotor Platform for Indoor EnvironmentsJanuary 2018 (has links)
abstract: Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments.
One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:
(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,
(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),
(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors
(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,
(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),
(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),
(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),
(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.
The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.
The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
|
2 |
Designing and experimenting with e-DTS 3.0Phadke, Aboli Manas 29 August 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / With the advances in embedded technology and the omnipresence of smartphones,
tracking systems do not need to be confined to a specific tracking environment. By introducing mobile devices into a tracking system, we can leverage their mobility and the
availability of multiple sensors such as camera, Wi-Fi, Bluetooth and Inertial sensors. This thesis proposes to improve the existing tracking systems, enhanced Distributed Tracking System (e-DTS 2.0) [19] and enhanced Distributed Object Tracking System (eDOTS)[26], in the form of e-DTS 3.0 and provides an empirical analysis of these improvements. The enhancements proposed are to introduce Android-based mobile devices into the tracking system, to use multiple sensors on the mobile devices such as the camera, the Wi-Fi and Bluetooth sensors and inertial sensors and to utilize possible resources that may be available in the environment to make the tracking opportunistic. This thesis empirically validates the proposed enhancements through the experiments carried out on a prototype of e-DTS 3.0.
|
Page generated in 0.0839 seconds