Spelling suggestions: "subject:"conduced seismic"" "subject:"1induced seismic""
1 |
The Influences of Stress and Structure on Mining-induced seismicity in Creighton Mine, Sudbury, CanadaSNELLING, PAIGE 15 September 2009 (has links)
The Creighton Mine is a structurally complex and seismically active mining environment. Microseismic activity occurs daily and increases with depth, complicating downward mine expansion. Larger magnitude events occur less frequently but can damage mine infrastructure, interrupt operations and threaten worker safety. This thesis explores the relationships between geological structure and mining-induced seismicity through geological, seismological and numerical modelling investigations in an area known as the Creighton Deep, with concentration on the 7400 Level (2255 m).
Geological features within the Creighton Deep have a reported association with seismic activity. Four families of shear zones were identified during field investigations, the most prominent striking SW and steeply dipping NW.
Seismicity from 2006-2007 is analyzed. Spatial and temporal trends and seismic event parameters show little correlation to shear zone geometry. Instead, seismic event parameters correlate to spatial clusters of events. A remote cluster of events to the southwest of the excavation exhibits anomalously high seismic parameter values. This area of the mine continues to be a source of elevated seismicity.
Fault plane solutions are utilized to compare shear zone geometry with active slip surfaces. Solutions for macroseismic events are inconsistent, while microseismic event focal mechanisms have similar pressure, tension and null axes. The resulting solutions do not align with shear-zone orientations. A stress inversion using microseismic focal mechanism information yields a stress tensor that is comparable to the regional stress tensor.
Universal Distinct Element Code numerical models demonstrate that a yield zone exists immediately surrounding the excavation. SW-striking shear zones modify the stress field, resulting in increased stress to the southeast of the excavation. These high-stress zones are areas of preferred seismic activity. Slip is induced on select SW-striking shear zones to the south of the excavation as well as localized yielding.
The characteristics of mining-induced seismicity do not correlate to shear zones. Seismicity does compare to modelled stress: the yielded rock mass adjacent to the excavation has little seismicity; areas of high stress are areas of rock mass damage and dense seismic activity. It is thus proposed that seismicity in the Creighton Deep results from stress-induced rock mass degradation rather than fault-slip. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2009-09-11 10:35:17.525
|
2 |
Predicting the Dynamics of Injection-Induced EarthquakesSchlosser, Charles Stewart 24 May 2023 (has links)
Human activities associated with the injection of fluids at depth are known to trigger earthquakes. Fluid injection increases the internal pore pressure of the host rock, which in turn reduces the effective stress and frictional resistance of faults that maintain the fractured rock system in a state of mechanical equilibrium. Under certain conditions, sufficiently high pore pressure can lower this frictional resistance below a critical threshold and initiate an earthquake – the relative motion of rock on either side of the fault plane. Many of these earthquakes are small and imperceptible without the aid of specialized instruments, but some may be large enough to pose a significant risk to life and property. Several emerging technologies that have the potential to shape the future of low-carbon energy production, including carbon capture and storage and enhanced geothermal energy production, are inextricably linked to large-scale injection of fluids into the subsurface. The risk of injection-induced earthquakes is a primary concern and potential barrier to widespread adoption of these technologies. New tools are required to help operators manage these risks and meet stakeholder expectations. Current knowledge enables operators to predict the conditions that would trigger such an earthquake, but few or no tools exist to predict the severity of the earthquakes, precluding a complete description of the risk associated with operating a large-scale injection well. This dissertation details the theoretical justification and initial validation of a methodology and software to simulate the motion of an earthquake as it occurs and quantify the severity in terms that are germane to experts in earthquake science. Specifically, this work utilizes the finite element method to solve the equations of motion dictated by the three-dimensional linear elastic constitutive equation. Novel aspects of this research include the treatment of friction at the fault interface as a constraint on the motion of the system, and the numerical methods necessary to solve this problem. This software was created exclusively with free and open source software, so that every aspect of its internal machinery may be scrutinized, replicated, and improved by future workers. / Doctor of Philosophy / Human activities associated with the injection of fluids at depth are known to trigger earthquakes. Many of these earthquakes are small and imperceptible without the aid of specialized instruments, but some may be large enough to pose a significant risk to life and property. Several emerging technologies that have the potential to shape the future of low-carbon energy production, including carbon capture and storage and enhanced geothermal energy production, are inextricably linked to large-scale injection of fluids into the subsurface. The risk of injection-induced earthquakes is a primary concern and potential barrier to widespread adoption of these technologies. New tools are required to help operators manage these risks and meet stakeholder expectations. Current knowledge enables operators to predict the conditions that would trigger such an earthquake, but few or no tools exist to predict the severity of the earthquakes, precluding a complete description of the risk associated with operating a large-scale injection well. This dissertation details the theoretical justification and initial validation of a methodology and software to simulate the motion of an earthquake as it occurs and quantify the severity in terms that are germane to experts in earthquake science. This software was created exclusively with free and open source software, so that every aspect of its internal machinery may be scrutinized, replicated, and improved by future workers.
|
3 |
A Statistical Approach for Assessing Seismic Transitions Associated with Fluid InjectionsWang, Pengyun 01 December 2016 (has links)
The wide application of fluid injection has caused a concern of the potential critical risk associated with induced seismicity. To help clarify the concern, this dissertation proposes a statistical approach for assessing seismic transitions associated with fluid injections by scientifically analyzing instrumental measures of seismic events. The assessment problem is challenging due to the uncertain effects of wastewater injections on regional seismicity, along with the limited availability of seismic and injection data. To overcome the challenge, three statistical methods are developed, with each being focused on a different aspect of the problem. Specifically, a statistical method is developed for early detection of induced seismicity, with the potential of allowing for site managers and regulators to act promptly and preparing communities for the increased seismic risk; the second method aims for addressing the further need of quantitatively assessing the transition of induced seismicity, which can reveal the underlying process of induced seismicity and provide data to support probabilistic seismic hazard analysis; and finally, the third method steps further to characterize the process of spatial distribution of induced seismicity, which accounts for spatial evolution of induced seismicity. All the proposed methods are built on the principles of Bayesian technique, which provides a flexible inference framework to incorporate domain expertise and data uncertainty. The effectiveness of the proposed methods is demonstrated using the earthquake dataset for the state of Oklahoma, which shows a promising result: the detection method is able to issue warning of induced seismicity well before the occurrence of severe consequences; the transition model provides a significantly better fit to the dataset than the classical model and sheds light on the underlying transition of induced seismicity in Oklahoma; and the spatio-temporal model provides a most comprehensive characterization of the dataset in terms of its spatial and temporal properties and is shown to have a much better short-term forecasting performance than the “naïve methods”. The proposed methods can be used in combination as a decision-making support tool to identify areas with increasing levels of seismic risk in a quantitative manner, supporting a comprehensive assessment to decide which risk-mitigation strategy should be recommended.
|
4 |
Laboratory Simulation of Reservoir-induced SeismicityYing, Winnie (Wai Lai) 02 September 2010 (has links)
Pore pressure exists ubiquitously in the Earth’s subsurface and very often exhibits a
cyclic loading on pre-existing faults due to seasonal and tidal changes, as well as the
impoundment and discharge of surface reservoirs. The effect of oscillating pore pressure on induced seismicity is not fully understood. This effect exhibits a dynamic variation in effective stresses in space and time. The redistribution of pore pressure as a result of fluid flow and pressure oscillations can cause spatial and temporal changes in the shear strength of fault zones, which may result in delayed and protracted slips on pre-existing fractures.
This research uses an experimental approach to investigate the effects of oscillating pore pressure on induced seismicity. With the aid of geophysical techniques, the spatial and temporal distribution of seismic events was reconstructed and analysed. Triaxial experiments were conducted on two types of sandstone, one with low permeability (Fontainebleau sandstone) and the other with high permeability (Darley Dale sandstone). Cyclic pore pressures were applied to the naturally-fractured samples to activate and reactivate the existing faults. The results indicate that the mechanical properties of the sample and the
heterogeneity of the fault zone can influence the seismic response. Initial seismicity was induced by applying pore pressures that exceeded the previous maximum attained during the
experiment. The reactivation of faults and foreshock sequences was found in the
Fontainebleau sandstone experiment, a finding which indicates that oscillating pore pressure can induce seismicity for a longer period of time than a single-step increase in pore pressure.
The corresponding strain change due to cyclic pore pressure changes suggests that
progressive shearing occurred during the pore pressure cycles. This shearing progressively damaged the existing fault through the wearing of asperities, which in turn reduced the friction coefficient and, hence, reduced the shear strength of the fault. This ‘slow’ seismic mechanism contributed to the prolonged period of seismicity. This study also applied a
material forecast model for the estimation of time-to-failure or peak seismicity in
reservoir-induced seismicity, which may provide some general guidelines for short-term field case estimations.
|
5 |
Laboratory Simulation of Reservoir-induced SeismicityYing, Winnie (Wai Lai) 02 September 2010 (has links)
Pore pressure exists ubiquitously in the Earth’s subsurface and very often exhibits a
cyclic loading on pre-existing faults due to seasonal and tidal changes, as well as the
impoundment and discharge of surface reservoirs. The effect of oscillating pore pressure on induced seismicity is not fully understood. This effect exhibits a dynamic variation in effective stresses in space and time. The redistribution of pore pressure as a result of fluid flow and pressure oscillations can cause spatial and temporal changes in the shear strength of fault zones, which may result in delayed and protracted slips on pre-existing fractures.
This research uses an experimental approach to investigate the effects of oscillating pore pressure on induced seismicity. With the aid of geophysical techniques, the spatial and temporal distribution of seismic events was reconstructed and analysed. Triaxial experiments were conducted on two types of sandstone, one with low permeability (Fontainebleau sandstone) and the other with high permeability (Darley Dale sandstone). Cyclic pore pressures were applied to the naturally-fractured samples to activate and reactivate the existing faults. The results indicate that the mechanical properties of the sample and the
heterogeneity of the fault zone can influence the seismic response. Initial seismicity was induced by applying pore pressures that exceeded the previous maximum attained during the
experiment. The reactivation of faults and foreshock sequences was found in the
Fontainebleau sandstone experiment, a finding which indicates that oscillating pore pressure can induce seismicity for a longer period of time than a single-step increase in pore pressure.
The corresponding strain change due to cyclic pore pressure changes suggests that
progressive shearing occurred during the pore pressure cycles. This shearing progressively damaged the existing fault through the wearing of asperities, which in turn reduced the friction coefficient and, hence, reduced the shear strength of the fault. This ‘slow’ seismic mechanism contributed to the prolonged period of seismicity. This study also applied a
material forecast model for the estimation of time-to-failure or peak seismicity in
reservoir-induced seismicity, which may provide some general guidelines for short-term field case estimations.
|
6 |
APPLICATION OF SEISMIC MONITORING IN CAVING MINESAbolfazlzadeh, Yousef 10 October 2013 (has links)
Comprehensive and reliable seismic analysis techniques can aid in achieving successful inference of rockmass behaviour in different stages of the caving process. This case study is based on field data from Telfer sublevel caving mine in Western Australia. A seismic monitoring database was collected during cave progression and breaking into an open pit 550 m above the first caving lift.
Five seismic analyses were used for interpreting the seismic events. Interpretation of the seismic data identifies the main effects of the geological features on the rockmass behaviour and the cave evolution. Three spatial zones and four important time periods are defined through seismic data analysis.
This thesis also investigates correlations between the seismic event rate, the rate of the seismogenic zone migration, mucking rate, Apparent Stress History, Cumulative Apparent Volume rate and cave behaviour, in order to determine failure mechanisms that control cave evolution at Telfer Gold mine.
|
7 |
Automated seismic event location by waveform coherence analysisGrigoli, Francesco January 2014 (has links)
Automated location of seismic events is a very important task in microseismic monitoring operations as well for local and regional seismic monitoring. Since microseismic records are generally characterised by low signal-to-noise ratio, such methods are requested to be noise robust and sufficiently accurate. Most of the standard automated location routines are based on the automated picking, identification and association of the first arrivals of P and S waves and on the minimization of the residuals between theoretical and observed arrival times of the considered seismic phases. Although current methods can accurately pick P onsets, the automatic picking of the S onset is still problematic, especially when the P coda overlaps the S wave onset. In this thesis I developed a picking free automated method based on the Short-Term-Average/Long-Term-Average (STA/LTA) traces at different stations as observed data. I used the STA/LTA of several characteristic functions in order to increase the sensitiveness to the P wave and the S waves. For the P phases we use the STA/LTA traces of the vertical energy function, while for the S phases, we use the STA/LTA traces of the horizontal energy trace and then a more optimized characteristic function which is obtained using the principal component analysis technique. The orientation of the horizontal components can be retrieved by robust and linear approach of waveform comparison between stations within a network using seismic sources outside the network (chapter 2). To locate the seismic event, we scan the space of possible hypocentral locations and origin times, and stack the STA/LTA traces along the theoretical arrival time surface for both P and S phases. Iterating this procedure on a three-dimensional grid we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatial and temporal coordinates of the seismic event. Location uncertainties are then estimated by perturbing the STA/LTA parameters (i.e the length of both long and short time windows) and relocating each event several times. In order to test the location method I firstly applied it to a set of 200 synthetic events. Then we applied it to two different real datasets. A first one related to mining induced microseismicity in a coal mine in the northern Germany (chapter 3). In this case we successfully located 391 microseismic event with magnitude range between 0.5 and 2.0 Ml. To further validate the location method I compared the retrieved locations with those obtained by manual picking procedure. The second dataset consist in a pilot application performed in the Campania-Lucania region (southern Italy) using a 33 stations seismic network (Irpinia Seismic Network) with an aperture of about 150 km (chapter 4). We located 196 crustal earthquakes (depth < 20 km) with magnitude range 1.1 < Ml < 2.7. A subset of these locations were compared with accurate locations retrieved by a manual location procedure based on the use of a double difference technique. In both cases results indicate good agreement with manual locations. Moreover, the waveform stacking location method results noise robust and performs better than classical location methods based on the automatic picking of the P and S waves first arrivals. / Die automatische Lokalisierung seismischer Ereignisse ist eine wichtige Aufgabe, sowohl im Bereich des Mikroseismischen Monitorings im Bergbau und von Untegrund Aktivitäten, wie auch für die lokale und regionale Überwachung von natürlichen Erdbeben.
Da mikroseismische Datensätze häufig ein schlechtes Signal-Rausch-Verhältnis haben müssen die Lokalisierungsmethoden robust gegen Rauschsignale und trotzdem hinreichend genau sein.
Aufgrund der in der Regel sehr hochfrequent aufgezeichneten Messreihen und der dadurch sehr umfangreichen Datensätze sind automatische Auswertungen erstrebenswert. Solche Methoden benutzen in der Regel automatisch gepickte und den P und S Phasen zugeordnete Ersteinsätze und Minimieren die Summe der quadratischen Zeitdifferenz zwischen den beobachteten und theoretischen Einsatzzeiten. Obgleich das automatische Picken der P Phase in der Regel sehr genau möglich ist, hat man beim Picken der S Phasen häufig Probleme, z.B. wenn die Coda der P Phase sehr lang ist und in den Bereich der S Phase hineinreicht. In dieser Doktorarbeit wird eine Methode vollautomatische, Wellenform-basierte Lokalisierungsmethode entwickelt, die Funktionen des Verhältnisses "Short Term Average / Long Term Average" (STA/LTA) verwendet und keine Pickzeiten invertiert. Die STA/LTA charakteristische Funktion wurde für unterschiedliche Wellenform Attribute getestet, um die Empfindlichkeit für P und S Phasen zu erhöhen. Für die P Phase wird die STA/LTA Funktion für die Energie der Vertikalkomponente der Bodenbewegung benutzt, wohingegen für die S Phase entweder die Energie der horizontalen Partikelbewegung oder eine optimierte Funktion auf Basis der Eigenwertzerlegung benutzt wird. Um die Ereignisse zu lokalisieren wird eine Gittersuche über alle möglichen Untergrundlokalisierungen durchgeführt. Für jeden räumlichen und zeitlichen Gitterpunkt werden die charakteristischen Funktionen entlang der theoretischen Einsatzkurve aufsummiert. Als Ergebnis erhält man eine 4-dimensionale Matrix über Ort und Zeit des Ereignisses, deren Maxima die wahrscheinlichsten Lokalisierungen darstellen. Um die Unsicherheiten der Lokalisierung abzuschätzen wurden die Parameter der STA/LTA Funktionen willkürlich verändert und das Ereignis relokalisiert. Die Punktwolke aller möglichen Lokalisierungen gibt ein Maß für die Unsicherheit des Ergebnisses. Die neu entwickelte Methode wurde an einem synthetischen Datensatz von 200 Ereignissen getestet und für zwei beobachtete Datensätze demonstriert. Der erste davon betrifft induzierte Seismizität in einem Kohlebergbau in Norddeutschland. Es wurden 391 Mikrobeben mit Magnituden zwischen Ml 0.5 und 2.0 erfolgreich lokalisiert und durch Vergleich mit manuell ausgewerteten Lokalisierungen verifziert.Der zweite Datensatz stammt von einem Anwednung auf des Regionale Überwachungsnetz in der Region Campania-Lucania (Süditalien) mit 33 seismischen Stationen und einer Apertur von etwa 150 km. Wir konnten 196 Erdbeben mit Tiefen < 20 km und Magnituden zwischen Ml 1.1 und 2.7 lokalisieren. Eine Untergruppe der eigenen Lokalisierungen wurde mit den Lokalisierungen einer Standard Lokalisierung sowie einer hochgenauen Relativlokalisierung verglichen. In beiden Fällen ist die Übereinstimmung mit den manuellen Lokalisierungen groß. Außerdem finden wir, dass die Wellenform Summations Lokalisierung ronbust gegen Rauschen ist und bessere Ergebnisse liefert als die Standard Lokalisierung, die auf dem automatischen Picken von Ersteinsatzzeiten alleine basiert.
|
8 |
Passive Tomography to Image Stress Redistribution Prior to Failure on Berea Sandstone and Marcellus Shale for Caprock IntegritySadtler, Daniel Allan 12 June 2012 (has links)
A recent concern is the cause and effect of global climate change. Many institutions give credit for these changes to the increased levels of greenhouse gases in the atmosphere, in particular the increase in the amount of carbon dioxide present. There is a growing interest in carbon capture and storage (CCS) as a means to reduce the global impact of CO₂ on the climate as a greenhouse gas. Carbon capture is the process of removing CO₂ from the atmosphere as well as preventing it from entering the atmosphere by means of exhaust. The captured carbon is stored underground in reservoirs. These reservoirs have the storage space to handle the volume of CO₂ injected as well as a caprock layer preventing the injection fluid from returning to the surface. Additionally, CO₂ can be used for enhanced oil recovery (EOR).
To monitor the injection sites used for the CO₂ storage or EOR process, the integrity of the caprock as well as the surrounding rock formations are the locations of interest. Knowing when a joint or a fracture is going to slip is necessary to prevent major failures within geologic strata. It is necessary to prevent these slips from occurring to retain the integrity of the caprock, which is keeping the fluid within the reservoirs.
Passive acoustic emissions monitoring was used to determine how effectively failure locations could be located in three unique tests. Coupled with double difference tomography, the failure of a Berea Sandstone sample and Marcellus Shale sample were calculated to determine how well the stress redistribution within the sample could be mapped using the recorded data. For the main indenter tests two samples were tested, a piece of Berea Sandstone and a piece of Marcellus Shale. The secondary test was a transform shear test using sandstone, and the third test for caprock upheaval test attempted to recreate the failure of caprock due to injection pressure. For all tests, the samples were monitored using acoustic emissions software until failure or it was deduced that the test would not produce failure.
The secondary tests did not progress through the data analysis as far as the indentation tests, however valuable information was gathered from these tests. The shear test demonstrated the effectiveness of the passive acoustic emissions monitoring system to record shear failure. This test provides confidence in this technology to record and located events that are not occurring in compression. The caprock upheaval tests were not successful in causing failure in the caprock, however during the testing the passive acoustic emissions monitoring system was able record and locate events that occurred within the sample around the boundary on the reservoir. At the reservoir boundaries there was evidence of fluid flowing through the reservoir, and the events align with these locations. This positive result shows that the monitoring system is able to locate events induced by fluid injection.
The results of these tests provide confidence in the passive acoustic emissions monitoring system to record accurate data for the caprock integrity monitoring. The tomograms created from the recorded data accurately imaged the areas of interest within the rock samples. From these results, passive acoustic emissions monitoring systems coupled with double difference tomography has proven capable of monitoring homogeneous samples within a laboratory environment. With further testing, this technology could possibly be a viable option for monitoring carbon sequestration sites. / Master of Science
|
9 |
Crustal unloading as a source of induced seismicity in Plainfield, Connecticut:Kondas, Sean Michael January 2020 (has links)
Thesis advisor: John E. Ebel / Thesis advisor: Mark D. Behn / On January 12, 2015, a magnitude 3.1 mainshock occurred in Plainfield, Connecticut near Wauregan Tilcon Quarry, causing modified Mercalli II-IV intensities. Shortly after the event, a team from Weston Observatory installed portable seismographs in the epicentral area. The portable array detected hundreds of small earthquakes from around the quarry, with 26 events that were accurately located. P-wave first motion directions obtained from readings of the mainshock suggest a thrusting focal mechanism on a NNE-SSW trending fault. In this research, we collected 113 gravity measurements in the proximity of the quarry to verify and correct local fault geometry proposed by historic aeromagnetic and geologic mapping. Interpretations of the computed simple Bouguer anomaly are consistent with historic mapping, with a few exceptions. The gravity survey constrains a NNE-SSW trending fault that dips west underneath the quarry, inferred to be the Lake Char-Honey Hill Fault, and reduces ambiguity in the position of an undefined ESE-WNW trending fault, which appears to be on strike to intersect the quarry. A 3D boundary element program (3D~Def) is used to simulate quarry-induced stress changes on these faults in order to analyze the possibility of inducing seismicity through crustal unloading in the region. Quarry operations resulted in the removal of mass from the crust, which decreased lithostatic load. In a setting confined by a maximum horizontal compressional stress, decreasing the lithostatic load, orminimum principal stress (σ3), shifts a Mohr-Coulomb diagram toward failure. The boundary element model shows that following the excavation of materials at the quarry, positive Coulomb failure stress changes occur on the west dipping Lake Char-Honey Hill Fault. In agreement with past studies, our results suggest that quarrying operations can trigger seismic activity in specific settings with stress regime, fault orientations, and rock characteristics such as those that exist in the northeastern U.S. In order to mitigate the risk for future earthquakes related to quarrying operations, these factors must be considered before operations begin. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
10 |
Thermo-Hydro-Mechanical Modeling of Induced Seismicity in Carbon Sequestration ProjectsMortezaei, Kimia 09 December 2016 (has links)
The ultimate goal of this project is to comprehensively investigate induced seismicity potential by studying the behavior of fault shear zones during high pressure CO2 injection for utilization and storage operations. Seismicity induced by fluid injection is one of the major concerns associated with recent energy technologies such as Carbon capture and storage (CCS) projects. CO2 injection increases reservoir pore pressure and decreases the effective stress causing deformation that can degrade the storage integrity by creating new fractures and reactivating faults. The first consequence is that reactivation of faults and fractures create a pathway for upward CO2 migration. The increased seismic activity is the second consequence, which raises the public concern despite the small magnitudes of such earthquakes. Changes in pore fluid pressure within the injection zone can induce low-magnitude seismic events. However, there are multiple involved Thermo-Hydro-Mechanical (THM) processes during and after fault slip that influences pore pressure and fault strength. Flash heating and thermal pressurization are two examples of such processes that can weaken the fault and decrease frictional resistance along the fault. The proposed study aims to use a multi-physics numerical simulation to analyze the fault shear zone mechanics and capture the involved THM processes during CO2 injection. In one study, a coupled THM model is performed to simulate stress and pore pressure changes in the fault and ultimately measuring the maximum induced magnitude. The other study investigates the response of the fault shear zone during CO2 injection with and without considering the thermal pressurization (TP) effect. In the third part, the realistic behavior of friction was studied by using a rate-and-state friction theory to capture the full earthquake rupture sequence. The outcome of the proposed project can significantly increase the efficiency and public acceptance of CCS technology by addressing the major concerns related to the induced seismicity due to CO2 injection.
|
Page generated in 0.0745 seconds