• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An integrated CMOS optical receiver with clock and data recovery Circuit

Chen, Yi-Ju 24 January 2006 (has links)
Traditional implementations of optical receivers are designed to operate with external photodetectors or require integration in a hybrid technology. By integrating a CMOS photodetector monolithically with an optical receiver, it can lead to the advantage of speed performance and cost. This dissertation describes the implementation of a photodetector in CMOS technology and the design of an optical receiver front-end and a clock and data recovery system. The CMOS detector converts the light input into an electrical signal, which is then amplified by the receiver front-end. The recovery system subsequently processes the amplified signal to extract the clock signal and retime the data. An inductive peaking methodology has been used extensively in the front-end. It allows the accomplishment of a necessary gain to compensate for an underperformed responsivity from the photodetector. The recovery circuits based on a nonlinear circuit technique were designed to detect the timing information contained in the data input. The clock and data recovery system consists of two units viz. a frequency-locked loop and a phase-locked loop. The frequency-locked loop adjusts the oscillator’s frequency to the vicinity of data rate before phase locking takes place. The phase-locked loop detects the relative locations between the data transition and the clock edge. It then synchronises the input data to the clock signal generated by the oscillator. A system level simulation was performed and it was found to function correctly and to comply with the gigabit fibre channel specification. / Dissertation (MEng (Micro-Electronics))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.0551 seconds