• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated On-chip Magnetic-Based Inductors with Externally Applied DC Magnetic Field for RF and Power Applications

January 2014 (has links)
abstract: Inductors are fundamental components that do not scale well. Their physical limitations to scalability along with their inherent losses make them the main obstacle in achieving monolithic system-on-chip platform (SoCP). For past decades researchers focused on integrating magnetic materials into on-chip inductors in the quest of achieving high inductance density and quality factor (QF). The state of the art on-chip inductor is made of an enclosed magnetic thin-film around the current carrying wire for maximum flux amplification. Though the integration of magnetic materials results in enhanced inductor characteristics, this approach has its own challenges and limitations especially in power applications. The current-induced magnetic field (HDC) drives the magnetic film into its saturation state. At saturation, inductance and QF drop to that of air-core inductors, eliminating the benefits of integrating magnetic materials. Increasing the current carrying capability without substantially sacrificing benefits brought on by the magnetic material is an open challenge in power applications. Researchers continue to address this challenge along with the continuous improvement in inductance and QF for RF and power applications. In this work on-chip inductors incorporating magnetic Co-4%Zr-4%Ta -8%B thin films were fabricated and their characteristics were examined under the influence of an externally applied DC magnetic field. It is well established that spins in magnetic materials tend to align themselves in the same direction as the applied field. The resistance of the inductor resulting from the ferromagnetic film can be changed by manipulating the orientation of magnetization. A reduction in resistance should lead to decreases in losses and an enhancement in the QF. The effect of externally applied DC magnetic field along the easy and hard axes was thoroughly investigated. Depending on the strength and orientation of the externally applied field significant improvements in QF response were gained at the expense of a relative reduction in inductance. Characteristics of magnetic-based inductors degrade with current-induced stress. It was found that applying an externally low DC magnetic field across the on-chip inductor prevents the degradation in inductance and QF responses. Examining the effect of DC magnetic field on current carrying capability under low temperature is suggested. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014

Page generated in 0.1171 seconds