• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 9
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 128
  • 123
  • 120
  • 118
  • 116
  • 116
  • 116
  • 116
  • 75
  • 75
  • 56
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Studies on the antioxidant activity of milk proteins in model oil-in-water emulsions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, Riddet Institute, Massey University, Palmerston North, New Zealand

Ries, Daniel January 2009 (has links)
The present study was aimed at extending our knowledge of the antioxidative properties of the milk protein products, whey protein isolate (WPI) and sodium caseinate (NaCas), in oil-in-water (O/W) emulsions rich in polyunsaturated fatty acids (PUFAs). In particular, the objective was to contribute to our understanding of the compositional and processing factors that influence the oxidative stability of protein-stabilised O/W emulsions. Linoleic acid (approximately 60 %) was used as the lipid for the oil phase (10.6 %). The emulsion samples were usually incubated at 50 °C to accelerate lipid oxidation. Lipid oxidation indicators were lipid hydroperoxides and headspace hexanal, determined by solid phase microextraction (SPME) combined with gas chromatography (GC). WPI- or NaCas-stabilised emulsions were prepared using a wide range of protein concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 7.0 or 10.0 %) at two droplet sizes (d32 = 0.31 and 0.65 µm). In general, higher lipid oxidation levels were found for the larger droplet size. Increasing protein concentration led to a decrease in the lipid oxidation rate. The greatest decrease in lipid hydroperoxide levels (values after 4 h) occurred at up to 4.0 % protein concentration. The greatest decrease in hexanal levels (values after 24 h) occurred at up to 4.0 % protein concentration in WPI emulsions (0.31 µm). The hexanal levels were more independent of the protein concentration in the other emulsion types. The hexanal level decreased at protein concentrations > 4.0 % in NaCas emulsions (0.31 and 0.65 µm) and at protein concentrations > 7.0 % in WPI emulsions (0.65 µm). The difference between lipid hydroperoxide generation in emulsions with small and large droplet sizes decreased with increasing protein concentration. This effect was more pronounced in NaCas emulsions. In general, NaCas was a better inhibitor of lipid oxidation than WPI, but WPI appeared to be the better antioxidant at some droplet size/protein concentration combinations. The protein in the continuous phase, i.e. the unadsorbed protein, played an important role in lipid oxidation. In principal, the lipid hydroperoxide and hexanal levels showed the same development over the continuous phase protein concentration as over the protein concentration in WPI and NaCas emulsions (d32 = 0.31 µm). A low NaCas level in the continuous phase already led to a relatively low hexanal level, whereas a higher WPI level was required. When NaCas solution was added to a WPI emulsion or WPI solution was added to a NaCas emulsion, a synergistic antioxidative effect was observed. The high molecular weight fractions (molecular weight = 12000-14000) of WPI and NaCas contained pro-oxidative metal ions that contributed to lipid oxidation in the emulsions. An enrichment of NaCas emulsions with the low molecular weight fraction of NaCas (with a molecular weight = 12000-14000) notably inhibited lipid oxidation. An enrichment of WPI emulsions with the low molecular weight fraction of WPI (with a molecular weight = 12000-14000) also seemed to inhibit lipid oxidation, but the effect was not significant. The protein solutions were enriched with these fractions before emulsion preparation. Pure WPI solution or mixed WPI/NaCas (1:1, weight/weight) solution with 1.12 or 2.24 % protein concentration was heated at 84 °C for up to 40 min, cooled and then used to prepare emulsions. Lipid oxidation was generally not affected by the heat treatment or the degree of whey protein denaturation. However, at the lower WPI concentration, more hexanal was produced for the longer heating times (20, 30 and 40 min) and this appeared to be connected with the physical instability of the emulsions. Greater oxidative stability was found at the higher protein concentration and when the proteins were mixed, pointing to a possible synergistic antioxidative effect of WPI and NaCas. The addition of the free radical source 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) greatly increased the oxygen uptake and the generation of lipid hydroperoxides in the emulsions. The oxidative stability increased with increasing protein concentration (1.0, 4.0 and 7.0 %). NaCas had a greater antioxidative effect than WPI. The inhibition of oxygen uptake appeared to be largely influenced by the free-radical-scavenging activity of the system, determined by the protein type and the protein concentration, as the radicals were produced linearly over time and oxygen was consumed linearly over time. It can therefore be concluded that free-radical-scavenging activity represents a major antioxidative mechanism of the milk proteins. Oxygen was consumed much faster in emulsions than in protein solutions when the same level of AAPH was incorporated. In a WPI (1.0 % protein) emulsion, much lower levels of protein hydroperoxides than of lipid hydroperoxides developed. This pointed to a much greater reactivity of linoleic acid than of the milk proteins with oxygen. In contrast, the exposure of WPI to oxidising linoleic acid in an emulsion (1.0 % protein) or to AAPH in aqueous solution led to oxidative damage of the whey proteins, indicated by the loss of amino acids. The loss of specific amino acids was different for proteins in the continuous phase or cream phase of an emulsion or in WPI solution. The present study confirms the antioxidative potential of WPI and NaCas and gives new insights into their functionality as oxidative stabilisers in O/W emulsions.
152

Studies on the antioxidant activity of milk proteins in model oil-in-water emulsions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, Riddet Institute, Massey University, Palmerston North, New Zealand

Ries, Daniel January 2009 (has links)
The present study was aimed at extending our knowledge of the antioxidative properties of the milk protein products, whey protein isolate (WPI) and sodium caseinate (NaCas), in oil-in-water (O/W) emulsions rich in polyunsaturated fatty acids (PUFAs). In particular, the objective was to contribute to our understanding of the compositional and processing factors that influence the oxidative stability of protein-stabilised O/W emulsions. Linoleic acid (approximately 60 %) was used as the lipid for the oil phase (10.6 %). The emulsion samples were usually incubated at 50 °C to accelerate lipid oxidation. Lipid oxidation indicators were lipid hydroperoxides and headspace hexanal, determined by solid phase microextraction (SPME) combined with gas chromatography (GC). WPI- or NaCas-stabilised emulsions were prepared using a wide range of protein concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 7.0 or 10.0 %) at two droplet sizes (d32 = 0.31 and 0.65 µm). In general, higher lipid oxidation levels were found for the larger droplet size. Increasing protein concentration led to a decrease in the lipid oxidation rate. The greatest decrease in lipid hydroperoxide levels (values after 4 h) occurred at up to 4.0 % protein concentration. The greatest decrease in hexanal levels (values after 24 h) occurred at up to 4.0 % protein concentration in WPI emulsions (0.31 µm). The hexanal levels were more independent of the protein concentration in the other emulsion types. The hexanal level decreased at protein concentrations > 4.0 % in NaCas emulsions (0.31 and 0.65 µm) and at protein concentrations > 7.0 % in WPI emulsions (0.65 µm). The difference between lipid hydroperoxide generation in emulsions with small and large droplet sizes decreased with increasing protein concentration. This effect was more pronounced in NaCas emulsions. In general, NaCas was a better inhibitor of lipid oxidation than WPI, but WPI appeared to be the better antioxidant at some droplet size/protein concentration combinations. The protein in the continuous phase, i.e. the unadsorbed protein, played an important role in lipid oxidation. In principal, the lipid hydroperoxide and hexanal levels showed the same development over the continuous phase protein concentration as over the protein concentration in WPI and NaCas emulsions (d32 = 0.31 µm). A low NaCas level in the continuous phase already led to a relatively low hexanal level, whereas a higher WPI level was required. When NaCas solution was added to a WPI emulsion or WPI solution was added to a NaCas emulsion, a synergistic antioxidative effect was observed. The high molecular weight fractions (molecular weight = 12000-14000) of WPI and NaCas contained pro-oxidative metal ions that contributed to lipid oxidation in the emulsions. An enrichment of NaCas emulsions with the low molecular weight fraction of NaCas (with a molecular weight = 12000-14000) notably inhibited lipid oxidation. An enrichment of WPI emulsions with the low molecular weight fraction of WPI (with a molecular weight = 12000-14000) also seemed to inhibit lipid oxidation, but the effect was not significant. The protein solutions were enriched with these fractions before emulsion preparation. Pure WPI solution or mixed WPI/NaCas (1:1, weight/weight) solution with 1.12 or 2.24 % protein concentration was heated at 84 °C for up to 40 min, cooled and then used to prepare emulsions. Lipid oxidation was generally not affected by the heat treatment or the degree of whey protein denaturation. However, at the lower WPI concentration, more hexanal was produced for the longer heating times (20, 30 and 40 min) and this appeared to be connected with the physical instability of the emulsions. Greater oxidative stability was found at the higher protein concentration and when the proteins were mixed, pointing to a possible synergistic antioxidative effect of WPI and NaCas. The addition of the free radical source 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) greatly increased the oxygen uptake and the generation of lipid hydroperoxides in the emulsions. The oxidative stability increased with increasing protein concentration (1.0, 4.0 and 7.0 %). NaCas had a greater antioxidative effect than WPI. The inhibition of oxygen uptake appeared to be largely influenced by the free-radical-scavenging activity of the system, determined by the protein type and the protein concentration, as the radicals were produced linearly over time and oxygen was consumed linearly over time. It can therefore be concluded that free-radical-scavenging activity represents a major antioxidative mechanism of the milk proteins. Oxygen was consumed much faster in emulsions than in protein solutions when the same level of AAPH was incorporated. In a WPI (1.0 % protein) emulsion, much lower levels of protein hydroperoxides than of lipid hydroperoxides developed. This pointed to a much greater reactivity of linoleic acid than of the milk proteins with oxygen. In contrast, the exposure of WPI to oxidising linoleic acid in an emulsion (1.0 % protein) or to AAPH in aqueous solution led to oxidative damage of the whey proteins, indicated by the loss of amino acids. The loss of specific amino acids was different for proteins in the continuous phase or cream phase of an emulsion or in WPI solution. The present study confirms the antioxidative potential of WPI and NaCas and gives new insights into their functionality as oxidative stabilisers in O/W emulsions.
153

High-pressure-induced starch gelatinisation and its application in a dairy system : a thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy in Food Science at Massey University, Auckland, New Zealand

Oh, Hyunah Eustina January 2009 (has links)
This study investigated pressure-induced starch gelatinisation in water and milk suspensions. A rheological method, termed ‘pasting curves’, provided an objective and analytical means to determine the degree of pressure-induced starch gelatinisation. In addition, a polarised light microscope was used to observe birefringence of the starch granules and the degree of starch swelling was measured. The preliminary investigation into pressure-induced gelatinisation of six different starches showed that potato starch was the most pressure resistant and was not gelatinised after a pressure treatment of 600 MPa for 30 min at 20 °C. Waxy rice, waxy corn and tapioca starches showed complete gelatinisation after the same treatment while normal rice and normal corn starches were only partially gelatinised despite the disappearance of birefringence. Based on the preliminary study, two starches (normal and waxy rice starches) were selected for more detailed studies. The effects of treatment conditions (pressure, temperature and duration) on the gelatinisation were investigated with these selected starches. The degree of gelatinisation was dependent on the type of starch and the treatment conditions. The results also indicated that different combinations of the treatment conditions (e.g. high treatment pressure for a short time and low treatment pressure for a longer time) could result in the same degree of gelatinisation. Both starch types exhibited sigmoidal-shaped pressure-induced gelatinisation curves and there was a linear correlation between the degree of swelling and the apparent viscosity of the starch suspension. After treatments at =500 MPa for 30 min at 20 °C, both starches lost all birefringence although the apparent viscosity and the degree of swelling of normal rice starch did not increase to the same extent as observed in waxy rice starch. Pressure-induced gelatinisation of starch was retarded when starch was suspended in skim milk. This was attributed to the effect of soluble milk minerals and lactose present in the milk whereas milk proteins (casein and whey) did not affect the degree of gelatinisation at the levels present in 10% total solids skim milk. The presence of soluble milk and/or lactose may lead to less effective plasticising of starch chains by the suspension medium. Interactions between milk components and starch molecules may also play a role in retarding gelatinisation by reducing the mobility of starch chains. The functionality of starch in a dairy application was tested using acid milk gels as a model system. Skim milk with added starch (waxy rice or potato starch) was either pressure treated (500 MPa, 20°C, 30 min) or heat treated (80°C, 30 min) and subsequently acidified to form acid milk gels. The addition of waxy rice starch resulted in firmer acid milk gels, and increasing the amount of starch caused an increase in the firmness of both pressure-treated and heat-treated samples. However, pressure-treated samples with added potato starch did not show significant changes in the firmness whereas the heat-treated counterparts showed a marked increase in the firmness as the level of potato starch increased. The difference between the effects of the two different starches can be explained by the extent of starch gelatinisation in skim milk. Starch granules absorb water during gelatinisation whether induced by pressure or heat which effectively increases milk protein concentration in the aqueous phase to form a denser protein gel network on acidification. The firmness of acid milk gels can be increased by adjusting the pH at pressure or heat treatment to higher than the natural pH of milk. The effect of pH at pressure or heat treatment and addition of starch on the acid milk gel firmness was additive and independent of each other up to a starch addition level of 1%. This study provided an insight into pressure-induced gelatinisation of starch by showing gelatinisation properties of starches of different botanical origins and the effects of the treatment conditions (treatment pressure, treatment temperature and duration) on the degree of gelatinisation. Furthermore, the results from the pressure treatments of starch in dairy-based suspensions showed that pressure-induced gelatinisation was affected by other components in the system. These results demonstrate the importance of understanding the gelatinisation properties of starch in complicated food systems in which a number of other components are present. In terms of the application of starch in dairy systems, when starch was added to milk and gelatinised by pressure treatment, the acid milk gel produced by subsequent acidification was firmer than the acid milk gel made from skim milk alone.
154

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
155

High-pressure-induced starch gelatinisation and its application in a dairy system : a thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy in Food Science at Massey University, Auckland, New Zealand

Oh, Hyunah Eustina January 2009 (has links)
This study investigated pressure-induced starch gelatinisation in water and milk suspensions. A rheological method, termed ‘pasting curves’, provided an objective and analytical means to determine the degree of pressure-induced starch gelatinisation. In addition, a polarised light microscope was used to observe birefringence of the starch granules and the degree of starch swelling was measured. The preliminary investigation into pressure-induced gelatinisation of six different starches showed that potato starch was the most pressure resistant and was not gelatinised after a pressure treatment of 600 MPa for 30 min at 20 °C. Waxy rice, waxy corn and tapioca starches showed complete gelatinisation after the same treatment while normal rice and normal corn starches were only partially gelatinised despite the disappearance of birefringence. Based on the preliminary study, two starches (normal and waxy rice starches) were selected for more detailed studies. The effects of treatment conditions (pressure, temperature and duration) on the gelatinisation were investigated with these selected starches. The degree of gelatinisation was dependent on the type of starch and the treatment conditions. The results also indicated that different combinations of the treatment conditions (e.g. high treatment pressure for a short time and low treatment pressure for a longer time) could result in the same degree of gelatinisation. Both starch types exhibited sigmoidal-shaped pressure-induced gelatinisation curves and there was a linear correlation between the degree of swelling and the apparent viscosity of the starch suspension. After treatments at =500 MPa for 30 min at 20 °C, both starches lost all birefringence although the apparent viscosity and the degree of swelling of normal rice starch did not increase to the same extent as observed in waxy rice starch. Pressure-induced gelatinisation of starch was retarded when starch was suspended in skim milk. This was attributed to the effect of soluble milk minerals and lactose present in the milk whereas milk proteins (casein and whey) did not affect the degree of gelatinisation at the levels present in 10% total solids skim milk. The presence of soluble milk and/or lactose may lead to less effective plasticising of starch chains by the suspension medium. Interactions between milk components and starch molecules may also play a role in retarding gelatinisation by reducing the mobility of starch chains. The functionality of starch in a dairy application was tested using acid milk gels as a model system. Skim milk with added starch (waxy rice or potato starch) was either pressure treated (500 MPa, 20°C, 30 min) or heat treated (80°C, 30 min) and subsequently acidified to form acid milk gels. The addition of waxy rice starch resulted in firmer acid milk gels, and increasing the amount of starch caused an increase in the firmness of both pressure-treated and heat-treated samples. However, pressure-treated samples with added potato starch did not show significant changes in the firmness whereas the heat-treated counterparts showed a marked increase in the firmness as the level of potato starch increased. The difference between the effects of the two different starches can be explained by the extent of starch gelatinisation in skim milk. Starch granules absorb water during gelatinisation whether induced by pressure or heat which effectively increases milk protein concentration in the aqueous phase to form a denser protein gel network on acidification. The firmness of acid milk gels can be increased by adjusting the pH at pressure or heat treatment to higher than the natural pH of milk. The effect of pH at pressure or heat treatment and addition of starch on the acid milk gel firmness was additive and independent of each other up to a starch addition level of 1%. This study provided an insight into pressure-induced gelatinisation of starch by showing gelatinisation properties of starches of different botanical origins and the effects of the treatment conditions (treatment pressure, treatment temperature and duration) on the degree of gelatinisation. Furthermore, the results from the pressure treatments of starch in dairy-based suspensions showed that pressure-induced gelatinisation was affected by other components in the system. These results demonstrate the importance of understanding the gelatinisation properties of starch in complicated food systems in which a number of other components are present. In terms of the application of starch in dairy systems, when starch was added to milk and gelatinised by pressure treatment, the acid milk gel produced by subsequent acidification was firmer than the acid milk gel made from skim milk alone.
156

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
157

Studies on the antioxidant activity of milk proteins in model oil-in-water emulsions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, Riddet Institute, Massey University, Palmerston North, New Zealand

Ries, Daniel January 2009 (has links)
The present study was aimed at extending our knowledge of the antioxidative properties of the milk protein products, whey protein isolate (WPI) and sodium caseinate (NaCas), in oil-in-water (O/W) emulsions rich in polyunsaturated fatty acids (PUFAs). In particular, the objective was to contribute to our understanding of the compositional and processing factors that influence the oxidative stability of protein-stabilised O/W emulsions. Linoleic acid (approximately 60 %) was used as the lipid for the oil phase (10.6 %). The emulsion samples were usually incubated at 50 °C to accelerate lipid oxidation. Lipid oxidation indicators were lipid hydroperoxides and headspace hexanal, determined by solid phase microextraction (SPME) combined with gas chromatography (GC). WPI- or NaCas-stabilised emulsions were prepared using a wide range of protein concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 7.0 or 10.0 %) at two droplet sizes (d32 = 0.31 and 0.65 µm). In general, higher lipid oxidation levels were found for the larger droplet size. Increasing protein concentration led to a decrease in the lipid oxidation rate. The greatest decrease in lipid hydroperoxide levels (values after 4 h) occurred at up to 4.0 % protein concentration. The greatest decrease in hexanal levels (values after 24 h) occurred at up to 4.0 % protein concentration in WPI emulsions (0.31 µm). The hexanal levels were more independent of the protein concentration in the other emulsion types. The hexanal level decreased at protein concentrations > 4.0 % in NaCas emulsions (0.31 and 0.65 µm) and at protein concentrations > 7.0 % in WPI emulsions (0.65 µm). The difference between lipid hydroperoxide generation in emulsions with small and large droplet sizes decreased with increasing protein concentration. This effect was more pronounced in NaCas emulsions. In general, NaCas was a better inhibitor of lipid oxidation than WPI, but WPI appeared to be the better antioxidant at some droplet size/protein concentration combinations. The protein in the continuous phase, i.e. the unadsorbed protein, played an important role in lipid oxidation. In principal, the lipid hydroperoxide and hexanal levels showed the same development over the continuous phase protein concentration as over the protein concentration in WPI and NaCas emulsions (d32 = 0.31 µm). A low NaCas level in the continuous phase already led to a relatively low hexanal level, whereas a higher WPI level was required. When NaCas solution was added to a WPI emulsion or WPI solution was added to a NaCas emulsion, a synergistic antioxidative effect was observed. The high molecular weight fractions (molecular weight = 12000-14000) of WPI and NaCas contained pro-oxidative metal ions that contributed to lipid oxidation in the emulsions. An enrichment of NaCas emulsions with the low molecular weight fraction of NaCas (with a molecular weight = 12000-14000) notably inhibited lipid oxidation. An enrichment of WPI emulsions with the low molecular weight fraction of WPI (with a molecular weight = 12000-14000) also seemed to inhibit lipid oxidation, but the effect was not significant. The protein solutions were enriched with these fractions before emulsion preparation. Pure WPI solution or mixed WPI/NaCas (1:1, weight/weight) solution with 1.12 or 2.24 % protein concentration was heated at 84 °C for up to 40 min, cooled and then used to prepare emulsions. Lipid oxidation was generally not affected by the heat treatment or the degree of whey protein denaturation. However, at the lower WPI concentration, more hexanal was produced for the longer heating times (20, 30 and 40 min) and this appeared to be connected with the physical instability of the emulsions. Greater oxidative stability was found at the higher protein concentration and when the proteins were mixed, pointing to a possible synergistic antioxidative effect of WPI and NaCas. The addition of the free radical source 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) greatly increased the oxygen uptake and the generation of lipid hydroperoxides in the emulsions. The oxidative stability increased with increasing protein concentration (1.0, 4.0 and 7.0 %). NaCas had a greater antioxidative effect than WPI. The inhibition of oxygen uptake appeared to be largely influenced by the free-radical-scavenging activity of the system, determined by the protein type and the protein concentration, as the radicals were produced linearly over time and oxygen was consumed linearly over time. It can therefore be concluded that free-radical-scavenging activity represents a major antioxidative mechanism of the milk proteins. Oxygen was consumed much faster in emulsions than in protein solutions when the same level of AAPH was incorporated. In a WPI (1.0 % protein) emulsion, much lower levels of protein hydroperoxides than of lipid hydroperoxides developed. This pointed to a much greater reactivity of linoleic acid than of the milk proteins with oxygen. In contrast, the exposure of WPI to oxidising linoleic acid in an emulsion (1.0 % protein) or to AAPH in aqueous solution led to oxidative damage of the whey proteins, indicated by the loss of amino acids. The loss of specific amino acids was different for proteins in the continuous phase or cream phase of an emulsion or in WPI solution. The present study confirms the antioxidative potential of WPI and NaCas and gives new insights into their functionality as oxidative stabilisers in O/W emulsions.
158

Studies on the antioxidant activity of milk proteins in model oil-in-water emulsions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, Riddet Institute, Massey University, Palmerston North, New Zealand

Ries, Daniel January 2009 (has links)
The present study was aimed at extending our knowledge of the antioxidative properties of the milk protein products, whey protein isolate (WPI) and sodium caseinate (NaCas), in oil-in-water (O/W) emulsions rich in polyunsaturated fatty acids (PUFAs). In particular, the objective was to contribute to our understanding of the compositional and processing factors that influence the oxidative stability of protein-stabilised O/W emulsions. Linoleic acid (approximately 60 %) was used as the lipid for the oil phase (10.6 %). The emulsion samples were usually incubated at 50 °C to accelerate lipid oxidation. Lipid oxidation indicators were lipid hydroperoxides and headspace hexanal, determined by solid phase microextraction (SPME) combined with gas chromatography (GC). WPI- or NaCas-stabilised emulsions were prepared using a wide range of protein concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 7.0 or 10.0 %) at two droplet sizes (d32 = 0.31 and 0.65 µm). In general, higher lipid oxidation levels were found for the larger droplet size. Increasing protein concentration led to a decrease in the lipid oxidation rate. The greatest decrease in lipid hydroperoxide levels (values after 4 h) occurred at up to 4.0 % protein concentration. The greatest decrease in hexanal levels (values after 24 h) occurred at up to 4.0 % protein concentration in WPI emulsions (0.31 µm). The hexanal levels were more independent of the protein concentration in the other emulsion types. The hexanal level decreased at protein concentrations > 4.0 % in NaCas emulsions (0.31 and 0.65 µm) and at protein concentrations > 7.0 % in WPI emulsions (0.65 µm). The difference between lipid hydroperoxide generation in emulsions with small and large droplet sizes decreased with increasing protein concentration. This effect was more pronounced in NaCas emulsions. In general, NaCas was a better inhibitor of lipid oxidation than WPI, but WPI appeared to be the better antioxidant at some droplet size/protein concentration combinations. The protein in the continuous phase, i.e. the unadsorbed protein, played an important role in lipid oxidation. In principal, the lipid hydroperoxide and hexanal levels showed the same development over the continuous phase protein concentration as over the protein concentration in WPI and NaCas emulsions (d32 = 0.31 µm). A low NaCas level in the continuous phase already led to a relatively low hexanal level, whereas a higher WPI level was required. When NaCas solution was added to a WPI emulsion or WPI solution was added to a NaCas emulsion, a synergistic antioxidative effect was observed. The high molecular weight fractions (molecular weight = 12000-14000) of WPI and NaCas contained pro-oxidative metal ions that contributed to lipid oxidation in the emulsions. An enrichment of NaCas emulsions with the low molecular weight fraction of NaCas (with a molecular weight = 12000-14000) notably inhibited lipid oxidation. An enrichment of WPI emulsions with the low molecular weight fraction of WPI (with a molecular weight = 12000-14000) also seemed to inhibit lipid oxidation, but the effect was not significant. The protein solutions were enriched with these fractions before emulsion preparation. Pure WPI solution or mixed WPI/NaCas (1:1, weight/weight) solution with 1.12 or 2.24 % protein concentration was heated at 84 °C for up to 40 min, cooled and then used to prepare emulsions. Lipid oxidation was generally not affected by the heat treatment or the degree of whey protein denaturation. However, at the lower WPI concentration, more hexanal was produced for the longer heating times (20, 30 and 40 min) and this appeared to be connected with the physical instability of the emulsions. Greater oxidative stability was found at the higher protein concentration and when the proteins were mixed, pointing to a possible synergistic antioxidative effect of WPI and NaCas. The addition of the free radical source 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) greatly increased the oxygen uptake and the generation of lipid hydroperoxides in the emulsions. The oxidative stability increased with increasing protein concentration (1.0, 4.0 and 7.0 %). NaCas had a greater antioxidative effect than WPI. The inhibition of oxygen uptake appeared to be largely influenced by the free-radical-scavenging activity of the system, determined by the protein type and the protein concentration, as the radicals were produced linearly over time and oxygen was consumed linearly over time. It can therefore be concluded that free-radical-scavenging activity represents a major antioxidative mechanism of the milk proteins. Oxygen was consumed much faster in emulsions than in protein solutions when the same level of AAPH was incorporated. In a WPI (1.0 % protein) emulsion, much lower levels of protein hydroperoxides than of lipid hydroperoxides developed. This pointed to a much greater reactivity of linoleic acid than of the milk proteins with oxygen. In contrast, the exposure of WPI to oxidising linoleic acid in an emulsion (1.0 % protein) or to AAPH in aqueous solution led to oxidative damage of the whey proteins, indicated by the loss of amino acids. The loss of specific amino acids was different for proteins in the continuous phase or cream phase of an emulsion or in WPI solution. The present study confirms the antioxidative potential of WPI and NaCas and gives new insights into their functionality as oxidative stabilisers in O/W emulsions.
159

Mathematical modelling of airflow in shipping systems : model development and testing : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

Smale, Nicholas John January 2004 (has links)
Content removed due to copyright restrictions: Smale, N.J. Tanner D.J., Amos N.D., Cleland D.J. (2003). Airflow properties of packaged horticultural produce - a practical study. Acta Horticulturae, (599), 443-450 / Horticultural exports are of economic significance to New Zealand. Only through providing consistently high quality products to distant markets can New Zealand hope to command a premium price. New Zealand's two major horticultural exports, apples and kiwifruit, are transported to foreign markets by sea; either in refrigerated holds on-board cargo vessels or in refrigerated containers. Long transit times mean that conditions in these systems must be carefully controlled to ensure high quality product arrives at market. Effective distribution of air is a key consideration in transport systems. A mathematical model to describe the flow of air in marine transport systems was developed. The model was based on a resistance network framework, relying on simplification of the complex geometry within the refrigerated space to a discrete number of flow paths and points of convergence and divergence. Correlations quantifying the flow resistance of each channel were required. Some of these correlations were already available, and some were developed specifically for this purpose. A general method for predicting the flow resistance of enclosed conduits based on the Darcy-Weisbach, laminar and Colebrook equations was found to be sufficiently accurate for use. The flow resistance of horizontally vented horticultural packages was quantified and the cause of the flow resistance investigated. Entrance and exit effects were found to be significant, and a relationship between vent size and flow resistance was developed. Air interchange between a vented carton and the general refrigerated space was shown to be a significant mode of heat transfer. The effect of vent design on the rate of air interchange was found to be complex. Quantitative relationships between vent characteristics and rates of air interchange could not be developed; however, some general observations were made. Vent size, aspect ratio and alignment were all found to affect the rate of interchange. An existing method for determining in-package fluid velocities was refined to improve the accuracy of data and reduce the measurement time. A low-cost method for measuring airflows in transport systems was also developed utilising thermistors. These thermistor anemometers were used to monitor velocities in four shipments of fresh produce from New Zealand. Three of the four vessels monitored showed large variation in the circulation rate in the period between evaporator defrosts due to frosting. In some cases, frosting was severe enough to cause loss of delivery air temperature control. Management of defrosts was identified as an area of improvement in refrigerated hold management. Validation of the model developed was performed using four systems: a laboratory scale test-rig, a 40' container and two of the surveyed refrigerated holds. Airflow predictions were used with a heat transfer model to predict in-package temperatures. Comparison of measured and predicted flows and in-package temperatures showed good agreement given uncertainty of geometry and input data. The implications of altering a number of operational and design variables in both containers and refrigerated holds were investigated using the developed models. Increased circulation rates were found to increase cooling rates and reduce temperature variability in both types of systems; however, the magnitude of the benefit decreased with increasing circulation rate. Removal of the floor gratings and the use of pallet bases as an air distribution channel was found to increase temperature variability in both types of systems. The magnitude of the increase was small in a 40' container but substantial in a refrigerated hold. The correlations and models developed in this thesis provide useful tools to analyse and optimise the design and operation of refrigerated marine transport systems.
160

Biochemical characterisation of dairy yeasts and their application in cheese as anaerobic adjunct cultures : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

Das, Shantanu January 2004 (has links)
Yeasts are traditionally used as part of the surface microflora in surface-ripened cheeses, where they contribute positively to the flavour of the cheese. The primary objective of this study was to investigate the potential of three dairy yeasts to provide attributes as adjuncts in anaerobically ripened cheeses. Geotrichum candidum (B9001), Yarrowia lipolytica (B9014) and Candida kefyr (B9006), obtained from the Fonterra Co-operative Group Ltd, Palmerston North, New Zealand, were studied. They showed diverse metabolic activities in laboratory media, which were influenced by the growth conditions. The metabolic activities of special interest were the lipase and proteinase activities and the production of volatile compounds, as these are important for cheese ripening and flavour development. Lipase activity (p-nitrophenyl butyrate assay) and proteinase activity (fluorescein isothiocyanate β-casein assay) were determined in three fractions prepared from yeast cultures and designated as extracellular fraction, washed-cell fraction and intracellular fraction. Lipase activity of G. candidum was detected only in the extracellular fraction and increased five fold when induced by safflower oil in a shake culture (0.16 µM/min/mL supernatant at 24 h). Lipase expression was delayed in static cultures. Y. lipolytica showed lipase activity in extracellular, washed-cell and intracellular fractions under all conditions. Static cultures in both glucose and safflower oil media showed higher lipase activity than shake cultures. The lipase activity of Y. lipolytica was higher in the late stationary phase than in the log phase under all conditions tested. The highest lipase activity was detected in a 192 h static culture grown in safflower oil medium (0.13 µM/min/mg dry cell weight, 0.3 µM/min/mg dry cell weight and 4.29 µM/min/mL supernatant in the intracellular, washed-cell and extracellular fractions respectively). C. kefyr did not show any lipase activity (< 0.03 µM/min/mL culture) under any of the growth conditions tested. Proteinase activity was detected in the intracellular fraction of 72 h shake cultures of G. candidum grown in both glucose medium and safflower oil medium (154 and 122 RFU/min/mg dry cell weight respectively) but was not detected in static cultures. Proteinase activity was absent in the Y. lipolytica cultures under all conditions tested (< 10 RFU/min/mL culture). C kefyr showed low proteinase activity (12-74 RFU/min/mL supernatant) in the extracellular fraction only in shake cultures grown in glucose medium. Volatile compounds of the headspace were sampled and analysed using solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The concentrations of volatile compounds were highest in shake cultures grown in glucose medium for all three yeasts. All yeasts produced several alcohols. Several esters were also detected in the G. candidum and C. kefyr cultures whereas aldehydes were detected only in the G. candidum cultures. G. candidum and Y. lipolytica were selected for cheese production trials because of their active cheese ripening enzymes. These yeasts, grown under different conditions, were added to Cheddar cheese (10 L vat). The yeast adjuncts influenced the cheese ripening by lipolysis [in terms of the production of free fatty acids (FFAs) analysed by gas chromatography-flame ionisation detector (GC-FID)] and the production of volatile compounds (SPME-GC-MS), whereas proteolysis (analysed by size-exclusion high performance liquid chromatography) by yeast enzymes was not obvious. The influence of Y. lipolytica as an anaerobic adjunct to cheese ripening was dependent on the growth conditions used during its propagation in laboratory media. The concentration of total FFAs was very high (37.1 mg/g cheese at 6 months) when a 192 h Y. lipolytica culture grown in safflower oil medium was added to a cheese make, whereas the cultures grown in glucose medium did not have any detectable effect. Addition of G. candidum culture to the cheese curd was more effective than its addition to the cheese milk. Both G. candidum and Y. lipolytica lipase(s) selectively hydrolysed the long-chain unsaturated fatty acids from the milk triglyceride in the cheese environment. Also, Y. lipolytica lipase exhibited some selectivity towards hydrolysis of butyric acid from the milk fat in the cheese. 2-Heptanone, 3-methyl-2-butanone and 2-nonanone were detected (1-10 x 106 relative peak area) only in the cheeses with yeast adjuncts but not in the control cheese. Enhancement of the production of both conjugated linoleic acid (CLA) and ethyl esters in a washed-curd, dry-salted cheese (375 L vat), made with G. candidum, Y. lipolytica, Propionibacterium freudenreichii ssp. shermanii, Lactobacillus fermentum and Lb. rhamnosus, was only partially successful. Higher concentrations of ethyl esters (> five fold; analysed by SPME-GC-MS) were produced in the cheeses made with yeast adjuncts. However, the concentration of total CLA (free plus esterified; analysed by GC-FID) did not increase although a higher concentration of free linoleic acid (> 10 fold), the substrate for CLA synthesis, was produced in the cheeses made with yeast adjuncts. A study of the formation of aromatic volatile compounds by C. kefyr in a medium containing L-phenylalanine (L-phe) showed that the yeast's ability to produce phenyl ethanol, phenyl ethyl acetate and benzaldehydc (analysed by SPME-GC-MS) was enhanced with an increase in the initial L-phe concentration (in the experimental range; analysed by enzymatic assay using phenylalanine ammonia lyase), but the yield was very low (20-27%). The initial concentration of glucose (in the experimental range; analysed by enzymatic assay using Peridochrom glucose reagent) did not affect the production of these aromatic volatile compounds. This study successfully showed that the yeasts G. candidum and Y. lipolytica, when used as anaerobic adjuncts, can influence the ripening and flavour development in Cheddar and washed-curd, dry-salted cheeses. The study also showed the capability of C. kefyr to produce aromatic volatile compounds from amino acid fermentation but the yields need to be increased by further manipulation of the medium components and the culture conditions before this capability can be used commercially.

Page generated in 0.098 seconds