• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 9
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 128
  • 123
  • 120
  • 118
  • 116
  • 116
  • 116
  • 116
  • 75
  • 75
  • 56
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Concentration of dairy flavours using pervaporation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Auckland, New Zealand

Overington, Amy Rachael January 2008 (has links)
The food industry could potentially benefit from using pervaporation, a membrane process, to concentrate flavours. This research aimed to investigate its application for concentrating flavours in dairy process streams. Pervaporation experiments were carried out at a range of operating conditions, using hydrophobic membranes. The feed mixtures were either aqueous model solutions of dairy flavour compounds (acids, esters and ketones), complex model mixtures containing flavour compounds plus non-volatile dairy components, or real dairy products. Flavour compound enrichment factors ranged from below one to above 30, with esters and ketones being concentrated more effectively than acids. Thus, the flavours could be partially fractionated based on their chemical structure. The permeation of acids was reduced by approximately 50% when the feed pH was increased to near their p Ka values. For flavour compounds with lower molecular weights than approximately 1 20 g mol- I , permeation was controlled mainly by sorption i n the membrane; for larger compounds it was controlled mainly by diffusion through the membrane. The mass transfer of each flavour compound increased with temperature, following an Arrhenius-like relationship. The activation energy was a function of each compound's heat of sorption, its molecular weight, and the elastic modulus of the membrane. The activation energy was also related to the Arrhenius preexponential factor. Thus, fluxes could be estimated through empirical correlations. The non-volatile feed composition was an important factor influencing the pervaporation performance. Milk protein isolate (4% w/v) or lactose (6% or 1 2% w/v) bound with the flavour compounds in the feed, thus lowering the enrichment of sorption-controlled compounds. Milk fat (up to 38% w/v, in the form of cream ) reduced the enrichment of all the flavour compounds tested. Esters and ketones became unavailable for pervaporation as they partitioned into the fat phase; acids remained mainly in the aqueous phase, but their permeation was reduced because the added cream increased the feed pH. Experiments with real dairy products showed that pervaporation could be used to concentrate diacetylin starter distillate, and to selectively recover short-chain esters from ester cream. Of these two products, starter distillate is the more promising for use as a pervaporation feed stream.
72

Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New Zealand

Noisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
73

Comparison of two ultrafiltration membrane systems for whole milk feta cheese production : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Food Technology at Massey University, Auckland, New Zealand

Chollangi, Anusha January 2009 (has links)
Cheese is one of the most well known food products in the world dating back to the 8th century B.C. There are more than 2000 varieties of cheese that are manufactured all over the world. Feta cheese is a soft white cheese with a salty and slightly acidic taste, which has originated from Greece. Most of the feta cheese manufactured in Greece is consumed locally, the migration of greeks to other parts of the world led to a demand for feta cheese outside of Greece. The spreading of the popularity of feta cheese to other ethnic groups in different parts of the world resulted in the high demand for feta cheese worldwide. The modern and most efficient method of feta cheese production involves a membrane filtration method, known as ultrafiltration. The ultrafiltration process utilises pressure as a driving force to concentrate milk by removal of water and small dissolved molecules. Hollow fibre and spiral wound ultrafiltration membranes are the two types of membranes that are commonly used for cheese production. An extensive amount of research exists on the implementation of ultrafiltration to improve the efficiency of the cheese making process and the performance of the membranes. However, limited research has been conducted on the comparison of the hollow fibre and spiral wound membrane performance in the cheese making process. The objective of the research was to determine if the hollow fibre membranes used at Puhoi Valley Cheese can be replaced with spiral wound membranes without compromising the quality of cheese produced. In order to achieve the objective, feta cheese was produced using hollow fibre and spiral wound ultrafiltration pilot plants. The operating performances of the hollow fibre and spiral wound membrane units were compared. To ensure that the quality of cheese is maintained, the cheese manufactured on the pilot plant units was analysed in terms of composition, microbiology, texture and sensory properties. The cheese made using the hollow fibre membrane pilot plant was compared with the reference sample from Puhoi Valley Cheese as they use hollow fibre membranes to produce feta cheese. The cheese made from the spiral wound membrane unit was also compared to that made by the hollow fibre membrane pilot plant unit. The operating parameters such as the inlet and outlet pressure, pressure difference along the membrane, transmembrane pressure, flow rate, recycle rate (bleed off rate), temperature and the run time were recorded. The operating parameters of the hollow fibre and spiral wound runs were compared with the data from Puhoi Valley Cheese. The quality of cheese made on the hollow fibre and spiral wound pilot plant units were evaluated in terms of composition, texture, microbiology and sensory properties. The composition was defined by the fat, protein, total solids and salt contents. The fat content was determined by utilising the modified Schmid-Bondzynski-Ratzlaff method, protein by the Kjeldahl method, total solids by using the air drying oven and salt percentage by the volhard method. The texture of the cheese was determined by the fracturability and hardness from the compression curve generated using the single bite compression test. The microbiological testing was performed according to New Zealand testing methods for E.Coli, Staphylococcus aureus, coliforms and yeast and mould. The difference from the control method was utilised for sensory evaluation. The acid degree value method was used to determine the lipase activity in feta cheese. It was found from the composition, texture and sensory analysis that the cheese from the hollow fibre pilot plant was different from the cheese manufactured at Puhoi Valley Cheeses (PVC). The spiral wound cheeses were also found to be different to PVC cheese, however the spiral wound cheeses and the pilot plant hollow fibre cheese were the same. The differences between both the pilot plant cheeses and PVC cheese were in terms of the fat, salt, moisture contents and the lipase activity in the cheeses. The fat content in the hollow fibre and spiral wound pilot plant cheeses are lower in comparison to the PVC cheese. This difference in fat content is considered to be due to the difference in the fat to protein ratio of the milk concentrated on the pilot plant and the PVC ultrafiltration system. The lower fat content resulted in firmer cheese than PVC due to more cross linking between the protein strands in cheese. The salt content in the cheeses made using the hollow fibre and spiral wound pilot plants was lower than Puhoi Valley Cheese. This is considered to be due to the low ratio of brine volume to cheese volume used for salting the cheese. The salt content of brine decreases during brining; hence a low ratio of brine volume to cheese volume causes a significant decrease in brine concentration. The decrease in brine concentration decreases the salt intake of the cheese. As salt diffuses in the moisture diffuses out, lower salt content results in higher moisture content in the cheese. As mentioned, the moisture content of the hollow fibre pilot plant cheese was higher than the PVC cheese. The moisture content is inversely proportional to the total solids, hence higher moisture in pilot plant cheeses implies lower total solids than the PVC cheese. The lipase activity results showed that the hollow fibre and spiral wound pilot plant cheeses had higher lipase activity than the Puhoi valley cheese. The differences in lipase activity of the pilot plant cheeses and Puhoi Valley cheese were considered to be due to the incomplete inactivation of lipase present in milk during pasteurisation. The results from texture and sensory evaluation support the above mentioned differences. The microbiology results for all pilot plant cheeses were within the trigger limits set by Puhoi valley cheeses. The results from monitoring the operating parameters of both the pilot plant data show that the permeate flux decreases while the total solids in milk increase with time, which was also observed from the Puhoi Valley Cheese data. However, the rate of decrease of the permeate flux and the increase of the total solids in milk are dependent on the membrane area, feed volume, transmembrane pressure, pressure drop across the membrane and the flow characteristics. The rate of decrease in permeate flux and the rate of increase in the total solids of the hollow fibre runs and spiral wound runs are slightly different. The difference is due to the availability of larger membrane surface area and processing of larger feed volume of milk in the spiral wound runs. The transmembrane pressure and the pressure drop across the membrane were maintained as close as possible to Puhoi Valley Cheese. In conclusion, spiral wound membranes can be used to achieve the desired total solids concentration and successfully make the same feta cheese as the hollow fibre pilot plant. In order to make the same quality of feta cheese as Puhoi Valley Cheese using the spiral wound membrane pilot plant, the same composition of milk used for concentration at Puhoi Valley Cheese needs to be used on the spiral wound pilot plant unit. It is recommended that Puhoi Valley Cheeses should be replaced with spiral wound membranes if they are more economical in terms of cost than the hollow fibre membranes.
74

Effects of postharvest treatments on storage quality of lime (Citrus latifolia Tanaka) fruit : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, New Zealand

Thamarath, Pranamornkith January 2009 (has links)
Limes (Citrus latifolia Tanaka) are an attractive fruit crop but generally suffer a loss in value as their colour changes from green to yellow. Various approaches were taken to slow degreening including low temperature storage, use of controlled atmosphere (CA) environments, and treatment of fruit with physiologically active agents such as gibberellic acid (GA3). However, the cold storage life of lime fruit can also be restricted by a number of factors including chilling injury (CI) and rots. Various pretreatments such as the use of fungicide (thiabendazole, TBZ) and hot water dipping (HWD) and several postharvest regimes based on temperature conditioning (step down technique) and intermittent warming (IW) regimes were further investigated to protect the fruit against rots and CI during cold storage. The objective of this study was to determine what storage conditions and pretreatments would permit long term storage of NZ limes with minimal loss of quality. CA storage (10% O2 with 0 or 3% CO2) was compared to regular air storage (RA) and IW (varying durations) treatments across a range of temperatures. Although some CA storage regimes could assist in delaying degreening, none of the treatments provided protection against CI. CA storage at 3% CO2 delayed yellowing and gave better fruit quality than the low CO2 treatment. High CO2 CA treatments at 5 or 7°C decreased the rate of colour change compared to other constant temperature treatments but did not protect against CI. CI limited storage of fruit under all conditions at constant low temperatures. Including fungicide (TBZ) in the dip water reduced the incidence of rots and had a secondary effect on protection against CI of lime fruit. However, fungicide use may sometimes exacerbate stresses such as heat injury on lime peel. Hot water dipping has been shown previously to hold potential as a storage pretreatment, but this technique may give risk of damage on produce if it is dipped at too high a temperature. Some HWD treatments did delay degreening, but there was no major effect on CI. HWD at > 47°C for = 4 min caused heat injury to NZ limes. All HWD treatments showed severe CI (>15%) after 10 weeks of cold storage; and HWD fruit stored under RA at 13°C did not show any CI but showed some pitting (= 10%) and degreened rapidly. Overall no suitable HWD treatment for limes was identified in this trial. This project identified the critical periods and temperature conditions for successful IW of limes. The IW conditions successfully delayed losses in quality of lime fruit provided the first warming period was applied within the first 20 days of storage. At least 2-cycle IW was required to maintain lime quality during long term storage. Some benefits were found after just one cycle of IW treatment but there were not enough to extend storage life. IW storage benefited fruit quality and provided the highest overall fruit quality of all postharvest treatments tested. The degreening of lime during cold storage at 5°C could be delayed by IW treatments in which the fruit were stored at 5°C for 12, 16 or 20 days then moved to 15°C for 2 days. Both 2- and 6-cycle IW treatments proved satisfactory for maintaining colour on the green and yellow side of lime for 12 weeks of storage. IW treatments in which fruit were warmed within 20 day of cold storage did not show significant CI symptoms after 12 weeks of storage, and the 2-cycle IW treatment showed only a low percentage of CI fruit at this time. A 2-cycle IW treatment was almost as effective as 6 cycles, and a step down treatment also showed some promising results, indicating that it may be possible to further optimize the time and duration of variable temperature storage regimes to meet both quality requirements and the constraints of temperature management in commercial coolstores. The application of these regimes to other citrus species may also be beneficial. There are a number of physiological explanations that may account for the effectiveness of IW including positive effects on heat shock protein (HSP) and cell membranes. Nutritional factors such as vitamin C and flavonoid compositions were also investigated and fruit that did not show visible CI were found to retain at-harvest levels of these factors. Practical ways of implementing IW are discussed. In order to understand the effectiveness of IW on degreening, I used a logistic model to describe degreening of lime peel. This modelling approach demonstrated that IW did not change the mechanism of lime degreening based on the similarity between the hue values predicted by the model and the actual hue values measured during lime storage. The activation energy (Ea) for degreening based on either hue angle (H°) or colour score (CS) during air storage was estimated to be ~53 and ~86 KJ.mol-1, respectively. Relationship between colour (H° and CS) and chlorophyll content, relationship between reflectance spectra (%), chlorophyll content and H° of lime fruit stored under different conditions are presented and discussed. This data allowed deduction to be made about the changes in individual pigments that are driving colour change during “good” and “bad” storage.
75

Production of alginate beads : a project report [i.e. thesis] presented in partial fulfillment of the requirements for the degree of Master in Food Technology at Massey University, Auckland, New Zealand. EMBARGOED until 1 May 2011

Ren, Lu Unknown Date (has links)
Content removed from thesis due to copyright restrictions: Winger, R.J. and L. Ren (2009). "Solubility of sodium and potassium iodates in saturated salt solutions." Food Chemistry 113: 600-601. / This paper was to improve the production of calcium-induced alginate gels manufactured by a company in Auckland. Problems encountered included yield and syneresis of the beads post-gelation. Essentially the alginate, sugars and other ingredients were dissolved in water at 80ºC. The pH of the solution was adjusted and the alginate beads were extruded into a 5% CaCl2 bath before being drained and dried. The chemical reaction between sodium alginate and calcium ions is dependent upon the solubility and availability of calcium ions. Some calcium salts (e.g., CaCl2, calcium lactate) were readily soluble and fully dissociated in water and resulted in an immediate gelation of the alginate. Dicalcium phosphate (DCP) was sparingly soluble at pH 7 and calcium ions were not released significantly until the pH reached about pH 4.2. Sodium hexametaphosphate (SHMP) is a chelating agent and this was used to soak up small quantities of Ca+2 to ensure no gelation occured while the alginate was being mixed. The optimum quantities of alginate, DCP and SHMP were defined in the laboratory trials. The use of SHMP, maltodextrin, and gums significantly affected the hardness and stickiness of gel beads. It was found that the combination of xanthan and alginate Protanal LF 120 gave the best results in terms of minimal stickiness and maximum yield after drying. Key words: alginate gel beads, syneresis, formula, pH, citric acid, gelation time, SHMP, setting time, yield rate, drying, hardness, stickiness, maltodextrin, xanthan gum, guar gum, stickiness by touching, leakage, apparent viscosity.
76

The Effect of Dosage Rate on The Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Dykes, Stuart January 2008 (has links)
The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis. A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six. The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolysis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO2 which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments. The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polypenols during maturation. Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes. The effect of SO2 on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO2 was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO2 increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO2 present whereas for the treatments without SO2 a steady increase was observed. The implication of these results is that SO2 may have a much larger effect on tannin development than oxygen. The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine. / AGMARDT Doctoral Scholarship
77

Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New Zealand

Noisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
78

Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New Zealand

Noisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
79

The Effect of Dosage Rate on The Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Dykes, Stuart January 2008 (has links)
The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis. A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six. The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolysis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO2 which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments. The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polypenols during maturation. Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes. The effect of SO2 on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO2 was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO2 increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO2 present whereas for the treatments without SO2 a steady increase was observed. The implication of these results is that SO2 may have a much larger effect on tannin development than oxygen. The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine. / AGMARDT Doctoral Scholarship
80

The Effect of Dosage Rate on The Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Dykes, Stuart January 2008 (has links)
The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis. A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six. The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolysis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO2 which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments. The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polypenols during maturation. Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes. The effect of SO2 on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO2 was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO2 increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO2 present whereas for the treatments without SO2 a steady increase was observed. The implication of these results is that SO2 may have a much larger effect on tannin development than oxygen. The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine. / AGMARDT Doctoral Scholarship

Page generated in 0.4342 seconds