• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digital Video Stabilization with Inertial Fusion

Freeman, William John 23 May 2013 (has links)
As computing power becomes more and more available, robotic systems are moving away from active sensors for environmental awareness and transitioning into passive vision sensors.  With the advent of teleoperation and real-time video tracking of dynamic environments, the need to stabilize video onboard mobile robots has become more prevalent. This thesis presents a digital stabilization method that incorporates inertial fusion with a Kalman filter.  The camera motion is derived visually by tracking SIFT features in the video feed and fitting them to an affine model.  The digital motion is fused with a 3 axis rotational motion measured by an inertial measurement unit (IMU) rigidly attached to the camera. The video is stabilized by digitally manipulating the image plane opposite of the unwanted motion. The result is the foundation of a robust video stabilizer comprised of both visual and inertial measurements.  The stabilizer is immune to dynamic scenes and requires less computation than current digital video stabilization methods. / Master of Science
2

Characterization of B-Fields Effects on Late-Time Rayleigh-Taylor Growth

Barbeau, Zoe 01 January 2020 (has links)
The intent of this thesis is to simulate the effect of a background magnetic field on Rayleigh-Taylor (RT) instability morphology and evolution in support of a Discovery Science campaign at the National Ignition Facility. The RT instability is relevant in High Energy Density (HED) systems including supernova remnants such as the Crab Nebula and inertial fusion confinement (ICF). Magnetic fields affect RT evolution and can suppress small-scale fluid motion. Thus far no experimental work has quantified the effect of a B-field on RT evolution morphology. RT evolution under a B-field was examined in three-dimensional magnetohydrodynamic (MHD) simulations using the hydrocode ARES, developed by Lawrence Livermore National Laboratory. The parameter space of the experiment is explored to determine the parameters that yield a visible effect on RT evolution. The effect of resistive MHD and conductivity is examined to further establish the desired parameter space to observe the suppression of RT morphology.
3

The interaction of picosecond high intensity laser pulses with preformed plasmas and solid targets

Gaillard, Romain Philippe January 1999 (has links)
No description available.
4

Shock Attenuation in Two-Phase (Gas-Liquid) Jets for Inertial Fusion Applications

Lascar, Celine Claire 24 August 2007 (has links)
Z-Pinch IFE (Inertial Fusion Energy) reactor designs will likely utilize high yield targets (~ 3 GJ) at low repetition rates (~ 0.1 Hz). Appropriately arranged thick liquid jets can protect the cavity walls from the target x-rays, ions, and neutrons. However, the shock waves and mechanical loadings produced by rapid heating and evaporation of incompressible liquid jets may be challenging to accommodate within a small reactor cavity. This investigation examines the possibility of using two-phase compressible (liquid/gas) jets to protect the cavity walls in high yield IFE systems, thereby mitigating the mechanical consequences of rapid energy deposition within the jets. Two-phase, free, vertical jets with different cross sections (planar, circular, and annular) were examined over wide ranges of liquid velocities and void fractions. The void fraction and bubble size distributions within the jets were measured; correlations to predict variations of the slip ratio and the Sauter mean diameter were developed. An exploding wire system was used to generate a shock wave at the center of the annular jets. Attenuation of the shock by the surrounding single- or two-phase medium was measured. The results show that stable coherent jets can be established and steadily maintained over a wide range of inlet void fractions and liquid velocities, and that significant attenuation in shock strength can be attained with relatively modest void fractions (~ 1%); the compressible two-phase jets effectively convert and dissipate mechanical energy into thermal energy within the gas bubbles. The experimental characteristics of single- and two-phase jets were compared against predictions of a state-of-art CFD code (FLUENT®). The data obtained in this investigation will allow reactor system designers to predict the behavior of single- and two-phase jets and quantify their effectiveness in mitigating the consequences of shock waves on the cavity walls in high yield IFE systems.
5

Propagation laser en plasma sous-dense et modélisation de déflectométrie protonique / laser pulses propagation in under dense plasma and proton radiography numerical modelling

Castan, Anaïs 29 January 2016 (has links)
Dans le cadre de la Fusion par Confinement Inertiel, la maîtrise de la propagation des faisceaux laser intenses, qui se propagent dans le plasma sous-dense d'une cavité d'ignition, reste un enjeu majeur. En effet, durant leur propagation, les faisceaux vont modifier les paramètres du plasma, ces paramètres contrôlant eux-mêmes la propagation. Cette rétroaction entre le plasma et le laser est potentiellement instable et produit de l'autofocalisation, de la filamentation, etc. Ces mécanismes peuvent alors dégrader fortement la propagation et in fine l'uniformité du dépôt d'énergie recherché.Dans cette étude, expérimentale et numérique, nous nous intéressons à la propagation d'un filament laser (tache focale d'une dizaine de micromètres, impulsion de 1,5 ns et d'intensité variant de 1014 W.cm-2 à 1016 W.cm-2) dans un milieu très sous dense (quelques pour-cents de la densité électronique critique). Deux expériences ont été réalisées sur l'installation de puissance LULI2000 et ont permis à la fois d'observer la transmission laser et de caractériser les gradients de température. Ces gradients sont produits par le transport électronique et influencent la réponse du plasma au laser. Afin de modéliser le rôle des gradients de température dans les instabilités d'auto-focalisation et de filamentation, nous avons associé un code d'hydrodynamique-radiative (FCI2) à un code détaillé de propagation (Héra). Pour compléter les observables précédentes, nous avons aussi mis en œuvre un diagnostic de déflectométrie protonique. Ce diagnostic permet de mesurer les champs électriques présents dans le plasma, ces champs étant issus du chauffage et de l'interaction laser. Un nouvel outil, associant le code de propagation laser et un code Monte-Carlo de transport de protons, a donc été mis en place pour modéliser les déflexions des protons. Cet outil ouvre en plus de nouvelles perspectives pour discuter de l'influence des effets 3D dans l'exploitation de ce diagnostic. Les résultats obtenus confirment l'intérêt à sonder les champs électriques au cœur même du plasma pendant la propagation laser. / The understanding and the control of high-power laser propagation into under-dense plasma is important to achieve inertial confinement fusion. During this process, the interaction of the laser with the plasma filling the hohlraum can lead to significant losses of laser energy which prevent ignition. Self-focusing or filamentation of the laser light is one of these phenomena which are desired to be mitigated since they also affect the uniformity of the laser illumination on the hohlraum wall.In order to improve our understanding of the laser-plasma interaction phenomena at play, we describe an experimental and numerical study involving an intense laser pulse between 1014 W.cm-2 and 1016 W.cm-2 , and which interacts with millimetric and under-dense plasma (having density of few % of the critical density). This work presents two experiments fielding a series of diagnostics aimed at well characterizing the laser propagation (Hisac camera) together with heat deposition in plasmas using Thomson scattering. Experimental results will be presented and discussed in the light of detailed simulations performed with the 3D laser propagation code Hera. In order to take into account the temperature gradients within the plasma during the laser propagation, Hera (laser propagation code) and FCI2 (radiation-hydrodynamic code) have been coupled. Besides, proton radiography has been used in order to access to electric fields. The measurements led to the implementation of a new and promising numerical tool using the Hera and Diane codes (Diane is a Monte Carlo particle tracing code). 3D proton radiography modelling opens new possibilities for users of this temporally and spatially resolved diagnostic.
6

Interaction of liquid droplets with low-temperature, low-pressure plasma

Jones, Tony Lee 15 April 2005 (has links)
The chamber walls in inertial fusion reactors must be protected from the photons and ions resulting from the target explosions. One way this can be accomplished is through a sacrificial liquid wall composed of either liquid jets or thin liquid films. The x-rays produced by the exploding targets deposit their energy in a thin liquid layer on the wall surface or in the surface of liquid jets arrayed to protect the wall. The partially vaporized liquid film/jet forms a protective cloud that expands toward the incoming ionic debris which arrives shortly (a few s) thereafter. The charged particles deposit their energy in the vapor shield and the unvaporized liquid, thereby leading to further evaporation. Re-condensation of the vapor cloud and radiative cooling of the expanding plasma allow the energy deposited in the liquid to be recovered prior to the next target explosion (100ms). Chamber clearing prior to the next explosion represents a major challenge for all liquid protection systems, inasmuch as any remaining liquid droplets may interfere with beam propagation and/or target injection. Therefore, the primary objective of this research is to experimentally examine the interaction between liquid droplets and low- temperature, low-pressure plasmas under conditions similar to those expected following inertial fusion target explosions and the subsequent expansion. The data obtained in this research will be useful in validating mechanistic chamber-clearing models to assure successful beam propagation and target injection for the subsequent explosion.

Page generated in 0.0484 seconds