• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cadeias estocásticas de memória ilimitada com aplicação na neurociência / Stochastic chains with unbounded memory applied in neuroscience

Ferreira, Ricardo Felipe 21 March 2019 (has links)
As cadeias estocásticas de memória ilimitada são uma generalização natural das cadeias de Markov, no caso em que as probabilidades de transição podem depender de todo o passado da cadeia. Estas cadeias, introduzidas, independentemente, por Onicescu e Mihoc em 1935 e Doeblin e Fortet em 1937, vêm recebendo uma atenção crescente na literatura probabilística, não só por serem uma classe mais rica que a classe das cadeias de Markov, como por suas capacidades práticas de modelagem de dados científicos em diversas áreas, indo da biologia à linguística. Neste trabalho, as utilizamos para modelar a interação entre sequências de disparos neuronais. Nosso objetivo principal é desenvolver novos resultados matemáticos acerca das cadeias de memória ilimitada. Inicialmente, estudamos as condições que garantem a existência e a unicidade de cadeias estacionárias compatíveis com uma família de probabilidades de transição descontínua. Em seguida, tratamos do entendimento da fenomenologia dos trens de disparos neuronais e usamos da informação dirigida para modelar a informação que flui de uma sequência de disparos a outra. Nesta ocasião, fixamos limites da concentração para estimação da informação dirigida. / Stochastic chains with unbounded memory are a natural generalization of Markov chains, in the sense that the transition probabilities may depend on the whole past. These process, introduced independently by Onicescu and Mihoc in 1935 and Doeblin and Fortet in 1937, have been receiving increasing attention in the probabilistic literature, because they form a class richer than the Markov chains and have practical capabilities modelling of scientific data in several areas, from biology to linguistics. In this work, we use them to model interactions between spike trains. Our main goal is to develop new mathematical results about stochastic chains with unbounded memory. First, we study conditions that guarantee the existence and uniqueness of stationary chains compatible with a discontinuous family of transition probabilities. Then, we address the understanding of the phenomenology of spike trains and we propose to use directed information to quantify the information flow from one neuron to another. In this occasion, we fix concentration bounds for directed information estimation.

Page generated in 0.1351 seconds