Spelling suggestions: "subject:"inference speed"" "subject:"inference apeed""
1 |
Establishing Effective Techniques for Increasing Deep Neural Networks Inference Speed / Etablering av effektiva tekniker för att öka inferenshastigheten i djupa neurala nätverkSunesson, Albin January 2017 (has links)
Recent trend in deep learning research is to build ever more deep networks (i.e. increase the number of layers) to solve real world classification/optimization problems. This introduces challenges for applications with a latency dependence. The problem arises from the amount of computations that needs to be performed for each evaluation. This is addressed by reducing inference speed. In this study we analyze two different methods for speeding up the evaluation of deep neural networks. The first method reduces the number of weights in a convolutional layer by decomposing its convolutional kernel. The second method lets samples exit a network through early exit branches when classifications are certain. Both methods were evaluated on several network architectures with consistent results. Convolutional kernel decomposition shows 20-70% speed up with no more than 1% loss in classification accuracy in setups evaluated. Early exit branches show up to 300% speed up with no loss in classification accuracy when evaluated on CPUs. / De senaste årens trend inom deep learning har varit att addera fler och fler lager till neurala nätverk. Det här introducerar nya utmaningar i applikationer med latensberoende. Problemet uppstår från mängden beräkningar som måste utföras vid varje evaluering. Detta adresseras med en reducering av inferenshastigheten. Jag analyserar två olika metoder för att snabba upp evalueringen av djupa neurala näverk. Den första metoden reducerar antalet vikter i ett faltningslager via en tensordekomposition på dess kärna. Den andra metoden låter samples lämna nätverket via tidiga förgreningar när en klassificering är säker. Båda metoderna utvärderas på flertalet nätverksarkitekturer med konsistenta resultat. Dekomposition på fältningskärnan visar 20-70% hastighetsökning med mindre än 1% försämring av klassifikationssäkerhet i evaluerade konfigurationer. Tidiga förgreningar visar upp till 300% hastighetsökning utan någon försämring av klassifikationssäkerhet när de evalueras på CPU.
|
2 |
An Investigation of Low-Rank Decomposition for Increasing Inference Speed in Deep Neural Networks With Limited Training DataWikén, Victor January 2018 (has links)
In this study, to increase inference speed of convolutional neural networks, the optimization technique low-rank tensor decomposition has been implemented and applied to AlexNet which had been trained to classify dog breeds. Due to a small training set, transfer learning was used in order to be able to classify dog breeds. The purpose of the study is to investigate how effective low-rank tensor decomposition is when the training set is limited. The results obtained from this study, compared to a previous study, indicate that there is a strong relationship between the effects of the tensor decomposition and how much available training data exists. A significant speed up can be obtained in the different convolutional layers using tensor decomposition. However, since there is a need to retrain the network after the decomposition and due to the limited dataset there is a slight decrease in accuracy. / För att öka inferenshastigheten hos faltningssnätverk, har i denna studie optimeringstekniken low-rank tensor decomposition implementerats och applicerats på AlexNet, som har tränats för att klassificera hundraser. På grund av en begränsad mängd träningsdata användes transfer learning för uppgiften. Syftet med studien är att undersöka hur effektiv low-rank tensor decomposition är när träningsdatan är begränsad. Jämfört med resultaten från en tidigare studie visar resultaten från denna studie att det finns ett starkt samband mellan effekterna av low-rank tensor decomposition och hur mycket tillgänglig träningsdata som finns. En signifikant hastighetsökning kan uppnås i de olika faltningslagren med hjälp av low-rank tensor decomposition. Eftersom det finns ett behov av att träna om nätverket efter dekompositionen och på grund av den begränsade mängden data så uppnås hastighetsökningen dock på bekostnad av en viss minskning i precisionen för modellen.
|
Page generated in 0.062 seconds