• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Portfolio efficiency tests with conditioning information using empirical likelihood estimation / Testes de eficiência com o uso de informação condicional em portfólios com estimação por verossimilhança empírica

Pereira, Caio Augusto Vigo 30 March 2016 (has links)
We evaluate the use of Generalized Empirical Likelihood (GEL) estimators in portfolios efficiency tests for asset pricing models in the presence of conditional information. Estimators from GEL family presents some optimal statistical properties, such as robustness to misspecification and better properties in finite samples. Unlike GMM, the bias for GEL estimators do not increase as more moment conditions are included, which is expected in conditional efficiency analysis. We found some evidences that estimators from GEL class really performs differently in small samples, where efficiency tests using GEL generate lower estimates compared to tests using the standard approach with GMM. With Monte Carlo experiments we see that GEL has better performance when distortions are present in data, especially under heavy tails and Gaussian shocks. / Neste estudo avaliamos o uso de estimadores Generalized Empirical Likelihood (GEL) em testes de eficiência de portfólios para modelos apreçamento de ativos na presença de informação condicional. Estimadores da família GEL apresentam algumas propriedades estatísticas ótimas, tais como robustez à má especificação e melhores propriedades em amostras finitas. Diferentemente do GMM, o viés dos estimadores GEL não aumenta conforme se incluem mais condições de momentos, o que é esperado na análise de eficiência condicional. Encontramos algumas evidências de que os estimadores da classe GEL realmente performam diferentemente em amostras finitas, em que testes de eficiência com o uso do GEL geram estimativas menores comparadas aos testes com o uso da abordagem padrão com GMM. Através dos experimentos de Monte Carlo vemos que o GEL possui melhor performance quando distorções estão presentes nos dados, especialmente sob heavy tails e choques Gaussianos.
2

Portfolio efficiency tests with conditioning information using empirical likelihood estimation / Testes de eficiência com o uso de informação condicional em portfólios com estimação por verossimilhança empírica

Caio Augusto Vigo Pereira 30 March 2016 (has links)
We evaluate the use of Generalized Empirical Likelihood (GEL) estimators in portfolios efficiency tests for asset pricing models in the presence of conditional information. Estimators from GEL family presents some optimal statistical properties, such as robustness to misspecification and better properties in finite samples. Unlike GMM, the bias for GEL estimators do not increase as more moment conditions are included, which is expected in conditional efficiency analysis. We found some evidences that estimators from GEL class really performs differently in small samples, where efficiency tests using GEL generate lower estimates compared to tests using the standard approach with GMM. With Monte Carlo experiments we see that GEL has better performance when distortions are present in data, especially under heavy tails and Gaussian shocks. / Neste estudo avaliamos o uso de estimadores Generalized Empirical Likelihood (GEL) em testes de eficiência de portfólios para modelos apreçamento de ativos na presença de informação condicional. Estimadores da família GEL apresentam algumas propriedades estatísticas ótimas, tais como robustez à má especificação e melhores propriedades em amostras finitas. Diferentemente do GMM, o viés dos estimadores GEL não aumenta conforme se incluem mais condições de momentos, o que é esperado na análise de eficiência condicional. Encontramos algumas evidências de que os estimadores da classe GEL realmente performam diferentemente em amostras finitas, em que testes de eficiência com o uso do GEL geram estimativas menores comparadas aos testes com o uso da abordagem padrão com GMM. Através dos experimentos de Monte Carlo vemos que o GEL possui melhor performance quando distorções estão presentes nos dados, especialmente sob heavy tails e choques Gaussianos.

Page generated in 0.0879 seconds