• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desambiguação lexical de revisões de itens aplicada em sistemas de recomendação / Word sense disambiguation of items revisions applied in recommendation systems

Marinho, Ronnie Shida 14 May 2018 (has links)
Com o intuito de auxiliar usuários na procura por produtos relevantes, sistemas Web integraram módulos de recomendação de itens, que selecionam automaticamente conteúdo de acordo com os interesses de cada indivíduo. Apesar de existirem diversas abordagens para calcular recomendações de acordo com interações disponíveis no sistema, a maioria delas sofre com a carência de informações utilizadas para caracterizar as preferências dos usuários e as descrições dos itens. Trabalhos recentes sobre sistemas de recomendação têm estudado a possibilidade de utilizar revisões de usuários como fonte de metadados, já que são criadas colaborativamente pelos indivíduos. Entretanto, ainda carecem de estudos sobre como organizar e estruturar os dados de maneira semântica. Desta maneira, este trabalho tem como objetivo desenvolver técnicas de construção de representação de itens baseadas em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que métodos distintos de desambiguação lexical de sentido causam na precisão da recomendação, sendo avaliada no cenário de predição de notas. A partir dessa estruturação, é possível caracterizar os itens e usuários de maneira mais eficiente, favorecendo o cálculo da recomendação de acordo com as preferências do indivíduo. / Web systems integrate recommending modules for items, which automatically select content according to the interest of each individual in order to help users in the search for relevant products. Although there are diverse recommending approaches to calculate recommendations according to users preferences, most of them lack information to characterize users preferences and item descriptions. Recent researches on recommender systems have studied the possibility of using users reviews as source of metadata, because users create them collaboratively. However, the literature still lacks studies about how to organize and structure data in a semantic manner. Therefore, this study aims to develop techniques for constructing the representation of items based on collaborative descriptions for recommender systems. For this reason, it is also aimed to analyze the impact caused by distinct methods of word sense disambiguation on the precision of recommendations, which we analyzed in the scenario of ratings predictions. Our results showed that we can characterize users and items in a more efficient way, favoring the calculation of recommendations according to users preferences.
2

Desambiguação lexical de revisões de itens aplicada em sistemas de recomendação / Word sense disambiguation of items revisions applied in recommendation systems

Ronnie Shida Marinho 14 May 2018 (has links)
Com o intuito de auxiliar usuários na procura por produtos relevantes, sistemas Web integraram módulos de recomendação de itens, que selecionam automaticamente conteúdo de acordo com os interesses de cada indivíduo. Apesar de existirem diversas abordagens para calcular recomendações de acordo com interações disponíveis no sistema, a maioria delas sofre com a carência de informações utilizadas para caracterizar as preferências dos usuários e as descrições dos itens. Trabalhos recentes sobre sistemas de recomendação têm estudado a possibilidade de utilizar revisões de usuários como fonte de metadados, já que são criadas colaborativamente pelos indivíduos. Entretanto, ainda carecem de estudos sobre como organizar e estruturar os dados de maneira semântica. Desta maneira, este trabalho tem como objetivo desenvolver técnicas de construção de representação de itens baseadas em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que métodos distintos de desambiguação lexical de sentido causam na precisão da recomendação, sendo avaliada no cenário de predição de notas. A partir dessa estruturação, é possível caracterizar os itens e usuários de maneira mais eficiente, favorecendo o cálculo da recomendação de acordo com as preferências do indivíduo. / Web systems integrate recommending modules for items, which automatically select content according to the interest of each individual in order to help users in the search for relevant products. Although there are diverse recommending approaches to calculate recommendations according to users preferences, most of them lack information to characterize users preferences and item descriptions. Recent researches on recommender systems have studied the possibility of using users reviews as source of metadata, because users create them collaboratively. However, the literature still lacks studies about how to organize and structure data in a semantic manner. Therefore, this study aims to develop techniques for constructing the representation of items based on collaborative descriptions for recommender systems. For this reason, it is also aimed to analyze the impact caused by distinct methods of word sense disambiguation on the precision of recommendations, which we analyzed in the scenario of ratings predictions. Our results showed that we can characterize users and items in a more efficient way, favoring the calculation of recommendations according to users preferences.
3

Filtragem baseada em conteúdo auxiliada por métodos de indexação colaborativa / Content-based filtering aided by collaborative indexing methods

D\'Addio, Rafael Martins 10 June 2015 (has links)
Sistemas de recomendação surgiram da necessidade de selecionar e apresentar conteúdo relevante a usuários de acordo com suas preferências. Dentre os diversos métodos existentes, aqueles baseados em conteúdo faz em uso exclusivo da informação inerente aos itens. Estas informações podem ser criadas a partir de técnicas de indexação automática e manual. Enquanto que as abordagens automáticas necessitam de maiores recursos computacionais e são limitadas á tarefa específica que desempenham, os métodos manuais são caros e propensos a erros. Por outro lado, com a expansão da Web e a possibilidade de usuários comuns criarem novos conteúdos e anotações sobre diferentes itens e produtos, uma alternativa é obter esses metadados criados colaborativamente pelos próprios usuários. Entretanto, essas informações, em especial revisões e comentários, podem conter ruídos, além de estarem em uma forma desestruturada. Deste modo, este trabalho1 tem como objetivo desenvolver métodos de construção de representações de itens baseados em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que diferentes técnicas de extração de características, aliadas à análise de sentimento, causam na precisão da geração de sugestões, avaliando-se os resultados em dois cenários de recomendação: predição de notas e geração de ranques. Dentre as técnicas analisadas, observa-se que a melhor apresenta um ganho no poder descritivo dos itens, ocasionando uma melhora no sistema de recomendação. / Recommender systems arose from the need to select and present relevant content to users according to their preferences. Among several existent methods, those based on content make exclusive use of information inherent to the items. This information can be created through automatic and manual indexing techniques. While automa-tic approaches require greater computing resources and are limited to the specific task they perform, manual methods are expensive and prone to errors. On the other hand, with the expansion of theWeb and the possibility of common users to create new content and descriptions about different items and products, an alternative is to get these metadata created collaboratively by the users. However, this information, especially reviews and comments, may contain noise, be- sides being in a unstructured fashion. Thus, this study aims to develop methods for the construction of items representations based on collaborative descriptions for a recommender system. This study aims to analyze the impact that different feature extraction techniques, combined with sentiment analysis, caused in the accuracy of the generated suggestions, evaluating the results in both recommendations cenarios: rating prediction and ranking generation. Among the analyzed techniques, it is observed that the best is able to describe items in a more effcient manner, resulting in an improvement in the recommendation system.
4

Filtragem baseada em conteúdo auxiliada por métodos de indexação colaborativa / Content-based filtering aided by collaborative indexing methods

Rafael Martins D\'Addio 10 June 2015 (has links)
Sistemas de recomendação surgiram da necessidade de selecionar e apresentar conteúdo relevante a usuários de acordo com suas preferências. Dentre os diversos métodos existentes, aqueles baseados em conteúdo faz em uso exclusivo da informação inerente aos itens. Estas informações podem ser criadas a partir de técnicas de indexação automática e manual. Enquanto que as abordagens automáticas necessitam de maiores recursos computacionais e são limitadas á tarefa específica que desempenham, os métodos manuais são caros e propensos a erros. Por outro lado, com a expansão da Web e a possibilidade de usuários comuns criarem novos conteúdos e anotações sobre diferentes itens e produtos, uma alternativa é obter esses metadados criados colaborativamente pelos próprios usuários. Entretanto, essas informações, em especial revisões e comentários, podem conter ruídos, além de estarem em uma forma desestruturada. Deste modo, este trabalho1 tem como objetivo desenvolver métodos de construção de representações de itens baseados em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que diferentes técnicas de extração de características, aliadas à análise de sentimento, causam na precisão da geração de sugestões, avaliando-se os resultados em dois cenários de recomendação: predição de notas e geração de ranques. Dentre as técnicas analisadas, observa-se que a melhor apresenta um ganho no poder descritivo dos itens, ocasionando uma melhora no sistema de recomendação. / Recommender systems arose from the need to select and present relevant content to users according to their preferences. Among several existent methods, those based on content make exclusive use of information inherent to the items. This information can be created through automatic and manual indexing techniques. While automa-tic approaches require greater computing resources and are limited to the specific task they perform, manual methods are expensive and prone to errors. On the other hand, with the expansion of theWeb and the possibility of common users to create new content and descriptions about different items and products, an alternative is to get these metadata created collaboratively by the users. However, this information, especially reviews and comments, may contain noise, be- sides being in a unstructured fashion. Thus, this study aims to develop methods for the construction of items representations based on collaborative descriptions for a recommender system. This study aims to analyze the impact that different feature extraction techniques, combined with sentiment analysis, caused in the accuracy of the generated suggestions, evaluating the results in both recommendations cenarios: rating prediction and ranking generation. Among the analyzed techniques, it is observed that the best is able to describe items in a more effcient manner, resulting in an improvement in the recommendation system.

Page generated in 0.0761 seconds