• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kernel methods for flight data monitoring / Méthodes à noyau pour l'analyse de données de vols appliquées aux opérations aériennes

Chrysanthos, Nicolas 24 October 2014 (has links)
L'analyse de données de vols appliquée aux opérations aériennes ou "Flight Data Monitoring" (FDM), est le processus par lequel une compagnie aérienne recueille, analyse et traite de façon régulière les données enregistrées dans les avions, dans le but d'améliorer de façon globale la sécurité.L'objectif de cette thèse est d'élaborer dans le cadre des méthodes à noyau, des techniques pour la détection des vols atypiques qui présentent potentiellement des problèmes qui ne peuvent être trouvés en utilisant les méthodes classiques. Dans la première partie, nous proposons une nouvelle méthode pour la détection d'anomalies.Nous utilisons une nouvelle technique de réduction de dimension appelée analyse en entropie principale par noyau afin de concevoir une méthode qui est à la fois non supervisée et robuste.Dans la deuxième partie, nous résolvons le problème de la structure des données dans le domaine FDM.Tout d'abord, nous étendons la méthode pour prendre en compte les paramètres de différents types tels que continus, discrets ou angulaires.Ensuite, nous explorons des techniques permettant de prendre en compte l'aspect temporel des vols et proposons un nouveau noyau dans la famille des techniques de déformation de temps dynamique, et démontrons qu'il est plus rapide à calculer que les techniques concurrentes et est de plus défini positif.Nous illustrons notre approche avec des résultats prometteurs sur des données réelles des compagnies aériennes TAP et Transavia comprenant plusieurs centaines de vols / Flight Data Monitoring (FDM), is the process by which an airline routinely collects, processes, and analyses the data recorded in aircrafts with the goal of improving the overall safety or operational efficiency.The goal of this thesis is to investigate machine learning methods, and in particular kernel methods, for the detection of atypical flights that may present problems that cannot be found using traditional methods.Atypical flights may present safety of operational issues and thus need to be studied by an FDM expert.In the first part we propose a novel method for anomaly detection that is suited to the constraints of the field of FDM.We rely on a novel dimensionality reduction technique called kernel entropy component analysis to design a method which is both unsupervised and robust.In the second part we solve the most salient issue regarding the field of FDM, which is how the data is structured.Firstly, we extend the method to take into account parameters of diverse types such as continuous, discrete or angular.Secondly, we explore techniques to take into account the temporal aspect of flights and propose a new kernel in the family of dynamic time warping techniques, and demonstrate that it is faster to compute than competing techniques and is positive definite.We illustrate our approach with promising results on real world datasets from airlines TAP and Transavia comprising hundreds of flights

Page generated in 0.1172 seconds