Spelling suggestions: "subject:"forminformation potential"" "subject:"informationation potential""
1 |
Decoupling control in statistical sense: minimised mutual information algorithmZhang, Qichun, Wang, A. 03 October 2019 (has links)
No / This paper presents a novel concept to describe the couplings among the outputs of the stochastic systems which are represented by NARMA models. Compared with the traditional coupling description, the presented concept can be considered as an extension using statistical independence theory. Based on this concept, the decoupling control in statistical sense is established with the necessary and sufficient conditions for complete decoupling. Since the complete decoupling is difficult to achieve, a control algorithm has been developed using the Cauchy-Schwarz mutual information criterion. Without modifying the existing control loop, this algorithm supplies a compensative controller to minimise the statistical couplings of the system outputs and the local stability has been analysed. In addition, a further discussion illustrates the combination of the presented control algorithm and data-based mutual information estimation. Finally, a numerical example is given to show the feasibility and efficiency of the proposed algorithm.
|
2 |
An?lise de Agrupamentos Com Base na Teoria da Informa??o: Uma Abordagem RepresentativaAra?jo, Daniel Sabino Amorim de 18 March 2013 (has links)
Made available in DSpace on 2014-12-17T14:55:09Z (GMT). No. of bitstreams: 1
DanielSAA_TESE_inicio_pag67.pdf: 3521346 bytes, checksum: 030bba7c8ca800b8151b345676b6759c (MD5)
Previous issue date: 2013-03-18 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Currently, one of the biggest challenges for the field of data mining is to perform
cluster analysis on complex data. Several techniques have been proposed but, in general,
they can only achieve good results within specific areas providing no consensus of what
would be the best way to group this kind of data. In general, these techniques fail due
to non-realistic assumptions about the true probability distribution of the data. Based on
this, this thesis proposes a new measure based on Cross Information Potential that uses
representative points of the dataset and statistics extracted directly from data to measure
the interaction between groups. The proposed approach allows us to use all advantages of
this information-theoretic descriptor and solves the limitations imposed on it by its own
nature. From this, two cost functions and three algorithms have been proposed to perform
cluster analysis. As the use of Information Theory captures the relationship between different
patterns, regardless of assumptions about the nature of this relationship, the proposed
approach was able to achieve a better performance than the main algorithms in literature.
These results apply to the context of synthetic data designed to test the algorithms in
specific situations and to real data extracted from problems of different fields / Atualmente, um dos maiores desafios para o campo de minera??o de dados ? realizar
a an?lise de agrupamentos em dados complexos. At? o momento, diversas t?cnicas foram
propostas mas, em geral, elas s? conseguem atingir bons resultados dentro de dom?nios
espec?ficos, n?o permitindo, dessa maneira, que exista um consenso de qual seria a melhor
forma para agrupar dados. Essas t?cnicas costumam falhar por fazer suposi??es nem sempre
realistas sobre a distribui??o de probabilidade que modela os dados. Com base nisso,
o trabalho proposto neste documento cria uma nova medida baseada no Potencial de Informa??o
Cruzado que utiliza pontos representativos do conjunto de dados e a estat?stica
extra?da diretamente deles para medir a intera??o entre grupos. A abordagem proposta
permite usar todas as vantagens desse descritor de informa??o e contorna as limita??es
impostas a ele pela sua pr?pria forma de funcionamento. A partir disso, duas fun??es
custo de otimiza??o e tr?s algoritmos foram constru?dos para realizar a an?lise de agrupamentos.
Como o uso de Teoria da Informa??o permite capturar a rela??o entre diferentes
padr?es, independentemente de suposi??es sobre a natureza dessa rela??o, a abordagem
proposta foi capaz de obter um desempenho superior aos principais algoritmos citados
na literatura. Esses resultados valem tanto para o contexto de dados sint?ticos desenvolvidos
para testar os algoritmos em situa??es espec?ficas quanto em dados extra?dos de
problemas reais de diferentes naturezas
|
Page generated in 0.2382 seconds